The Free Energy of the Spin-Boson Model

G. A. Raggio ${ }^{1}$

Received February 15, 1988; revision received May 16, 1988

Abstract

For n spins $1 / 2$ coupled linearly to a boson field in a volume V_{n}, the existence of the specific free energy is proved in the limit $n \rightarrow \infty, V_{n} \rightarrow \infty$ with $n / V_{n}=$ const. The interaction is essentially of the mean field type, in as much as it is proportional to $1 / \sqrt{V_{n}}$; the coupling constants are allowed to be spin dependent. A variational expression is obtained for the limiting specific free energy, and a critical temperature is identified above which the system behaves as if there were no coupling at all.

KEY WORDS: Spins coupled to a boson field; thermodynamics of two-level atoms interacting with radiation; phase transition.

1. INTRODUCTION AND MAIN RESULT

Consider the Hamiltonian

$$
\begin{aligned}
H_{n}= & \sum_{v \geqslant 1} \omega_{n}(v) a_{v}^{*} a_{v}+V_{n}^{-1 / 2} \sum_{v \geqslant 1} \sum_{j=1}^{n}\left\{\lambda_{n}(j ; v) a_{v}^{*}+\overline{\lambda_{n}(j ; v)} a_{v}\right\} S_{(j)}^{x} \\
& +\sum_{j=1}^{n} \varepsilon_{n}(j) S_{(j)}^{z}
\end{aligned}
$$

for n spins $1 / 2$ - described by the spin operators $\left\{S_{(j)}^{\alpha}: j=1,2, \ldots, n\right.$; $\alpha=x, y, z\}$, with $\left[S_{(j)}^{x}, S_{(k)}^{y}\right]=i \delta_{j k} S_{(j)}^{z}$ and cyclic permutations-interacting linearly with a countable number of bosonic degrees of freedom described by creation/annihilation operators $\left\{a_{v}^{*}, a_{v}: v \geqslant 1\right\}$, with $\left[a_{v}, a_{v^{\prime}}^{*}\right] \subset \delta_{v, v^{\prime}}$. The strictly positive bosonic frequencies $\omega_{n}(v)$ are assumed to satisfy

$$
\sum_{\nu \geqslant 1} e^{-\beta \omega_{n}(\nu)}<\infty \quad \text { for } \quad \beta>0
$$

[^0]the coupling constants $\left\{\lambda_{n}(j ; v): v \geqslant 1, j=1,2, \ldots, n\right\}$ are complex numbers satisfying
$$
\sum_{v \geqslant 1}\left|\lambda_{n}(j ; v)\right|^{2}<\infty \quad \text { for every } \quad j=1,2, \ldots, n
$$
and the $\left\{\varepsilon_{n}(j): j=1,2, \ldots, n\right\}$ are real. The Hamiltonian arises in a realistic model of atoms (or molecules) interacting with radiation if one accepts to treat the atoms in a two-level approximation and neglects terms that are quadratic in creation or annihilation operators. ${ }^{(9)}$

The problem is to determine the specific free energy of the system in the thermodynamic limit $n \rightarrow \infty$, where V_{n}, the volume of the system, is proportional to n, that is, $\rho=n / V_{n}$, the density of the spins, is constant. This problem has been solved in a number of particular cases. Hepp and Lieb ${ }^{(8)}$ treated the case of one bosonic mode, using a rotating-wave approximation for the coupling (Dicke maser model). These same authors then ${ }^{(9)}$ removed the latter approximation and treated finitely many bosonic modes in the homogeneous case, where the coupling constants and spin frequencies are independent of the spins: $\lambda_{n}(j ; v)=\lambda_{n}(v)$ and $\varepsilon_{n}(j)=\varepsilon_{n}$ for every $j=1,2, \ldots, n$. Hepp and Lieb also obtained results on the thermodynamic stability for the general (i.e., heterogeneous) model, leaving open the question of the existence of the thermodynamic limit. ${ }^{(9)}$ Subsequently, the "approximating Hamiltonian method" has been used on the Hamiltonian H_{n} and its variants. ${ }^{(2,3,12)}$ The homogeneous case with countably many bosonic modes has been treated in detail ${ }^{(10)}$ using largedeviation methods developed in ref. 4.

Here, the problem is solved for the heterogeneous model using a method developed by Duffield and Pulè in their treatment of the BCS model ${ }^{(6)}$ supplemented with an idea of Bogoljubov and Plechko. ${ }^{(3)}$ It is shown that under certain specified conditions H_{n} is thermodynamically equivalent (in the sense that the difference of the specific free energies vanishes in the thermodynamic limit) to the Hamiltonian

$$
\widetilde{H}_{n}=\sum_{v \geqslant 1} \omega_{n}(v) a_{v}^{*} a_{v}+\sum_{j=1}^{n} \varepsilon_{n}(j) S_{(j)}^{z}-V_{n}^{-1} \sum_{j, k=1}^{n} A_{n}(j, k) S_{(j)}^{x} S_{(k)}^{x}
$$

where the spin-boson interaction is replaced by an effective quadratic spin-spin interaction:

$$
\Lambda_{n}(j, k)=\operatorname{Re} \sum_{v \geqslant 1} \omega_{n}(v)^{-1} \overline{\lambda_{n}(j ; v)} \lambda_{n}(k ; v), \quad j, k=1,2, \ldots, n
$$

Moreover, \tilde{H}_{n} is thermodynamically equivalent to the Hamiltonian

$$
\begin{aligned}
\hat{H}_{n}(x)= & \sum_{v \geqslant 1} \omega_{n}(v) a_{v}^{*} a_{v}+\sum_{j=1}^{n} \varepsilon_{n}(j) S_{(j)}^{z} \\
& +\sum_{j, k=1}^{n} A_{n}(j, k) x_{j}\left\{V_{n} x_{k} 1-2 S_{(k)}^{x}\right\}
\end{aligned}
$$

if the real n-vector x is chosen so as to minimize the corresponding specific free energy.

The result is then the following:
Theorem 1. Suppose there exist real-valued continuous functions ε on $[0,1]$ and A on $[0,1] \times[0,1]$ such that the following conditions hold:
(C1) $\quad \lim _{n \rightarrow \infty} \sup _{j \in\{1,2, \ldots, n\}}\left|\varepsilon_{n}(j)-\varepsilon(j / n)\right|=0$
(C2) $\quad \lim _{n \rightarrow \infty} \sup _{j, k \in\{1,2, \ldots, n\}}\left|A_{n}(j, k)-A(j / n, k / n)\right|=0$
If
(C3) $\quad f^{0}=\lim _{\substack{n \rightarrow \infty \\ \rho=\text { const }}}\left(-\beta V_{n}\right)^{-1} \log \operatorname{tr} \exp \left\{-\beta \sum_{v \geqslant 1} \omega_{n}(v) a_{v}^{*} a_{v}\right\}$
exist for some $\beta>0$ and if

$$
\text { (C4) } \quad \lim _{n \rightarrow \infty} n^{-3 / 2} \sum_{v \geqslant 1} \omega_{n}(v)^{-1 / 2} \sum_{j=1}^{n}\left|\lambda_{n}(j ; v)\right|=0
$$

then

$$
\begin{aligned}
& \lim _{\substack{n \rightarrow \infty \\
\rho=\text { const }}}\left(-\beta V_{n}\right)^{-1} \log \operatorname{tr} \exp \left(-\beta H_{n}\right) \\
&=f^{0}-\rho \sup _{\substack{r, s \in L_{\mathrm{R}}^{\infty}([0,1]) \\
|s| \leqslant r \leqslant 1}}\left(\int_{0}^{1}\left\{\beta^{-1} I(r(t))+\frac{1}{2}|\varepsilon(t)|\left[r(t)^{2}-s(t)^{2}\right]^{1 / 2}\right\} d t\right. \\
&\left.+\frac{1}{4} \rho \int_{0}^{1} \int_{0}^{1} A(t, u) s(t) s(u) d t d u\right)
\end{aligned}
$$

where

$$
\begin{aligned}
I(x)= & -\frac{1}{2}(1+x) \log \left[\frac{1}{2}(1+x)\right] \\
& -\frac{1}{2}(1-x) \log \left[\frac{1}{2}(1-x)\right] \quad \text { for } \quad 0 \leqslant x \leqslant 1
\end{aligned}
$$

This is proved in Section 3, after introducing notation in Section 2. The solution of the variational problem, following Duffield and Pulè, ${ }^{(6)}$ is presented and briefly discussed in Section 4.

2. NOTATION AND DEFINITIONS

It will be convenient to use Fock-space notation. For each $n=1,2,3, \ldots$, let \mathscr{A}_{n} be a bounded region in \mathbb{R}^{d} of volume (i.e., Lebesgue measure) V_{n}. Let \mathfrak{h}_{n} be a positive, injective, self-adjoint operator on $L^{2}\left(\mathscr{A}_{n}\right)$ such that $\exp \left(-\beta \mathfrak{h}_{n}\right)$ is trace-class for $\beta>0$. It follows that \mathfrak{h}_{n} has a bounded inverse. Write \mathfrak{S}_{n} for the n-fold tensor product of \mathbb{C}^{2} and let $S_{(j)}$ be a copy of the spin operator of magnitude $1 / 2$ acting on the j th component of $\mathfrak{K}_{n}(j=1,2, \ldots, n)$. Let \mathfrak{F}_{n} be the symmetric Fock space over $L^{2}\left(\mathscr{A}_{n}\right)$ and consider the Hamiltonian ${ }^{2}$
$H_{n}=d \Gamma\left(\mathfrak{h}_{n}\right)+\sum_{j=1}^{n}\left\{\left(V_{n}\right)^{-1 / 2}\left\{a^{*}\left(\lambda_{n}(j)\right)+a\left(\lambda_{n}(j)\right)\right\} S_{(j)}^{x}+\varepsilon_{n}(j) S_{(j)}^{z}\right\}$
acting on $\mathfrak{F}_{n} \otimes \mathfrak{R}_{n}$, where $\left\{\varepsilon_{n}(j)\right\} \subset \mathbb{R},\left\{\lambda_{n}(j)\right\} \subset L^{2}\left(\mathscr{A}_{n}\right), a(\cdot)$ is the familiar annihilation operator, and $d \Gamma$ denotes the second-quantization map. The quadratures formula ${ }^{(5)}$

$$
\begin{equation*}
W[f]^{*} d \Gamma(\mathfrak{h}) W[f]=d \Gamma(\mathfrak{h})+a^{*}(\mathfrak{h} f)+a(\mathfrak{h} f)+\langle f, \mathfrak{h} f\rangle \cdot 1 \tag{2.2}
\end{equation*}
$$

valid for $f \in \operatorname{Dom}(\mathfrak{h})$, where $W[f] \equiv \exp \left\{\overline{a^{*}(f)-a(f)}\right\}$ is the unitary Weyl operator, enables one to write

$$
\begin{equation*}
H_{n}=\sum_{j=1}^{n}\left\{n^{-1} U_{n}(j)^{*} d \Gamma\left(\mathfrak{h}_{n}\right) U_{n}(j)+\varepsilon_{n}(j) S_{(j)}^{z}-\frac{1}{4} \rho\left\|\mathfrak{h}_{n}^{-1 / 2} \lambda_{n}(j)\right\|^{2} 1\right\} \tag{2.3}
\end{equation*}
$$

where the unitaries $U_{n}(j), j=1,2, \ldots, n$, are given by

$$
\begin{equation*}
U_{n}(j):=W\left[\frac{1}{2} n\left(V_{n}\right)^{-1 / 2} \mathfrak{h}_{n}^{-1} \lambda_{n}(j)\right] P_{(j)}^{+}+W\left[\frac{1}{2} n\left(V_{n}\right)^{-1 / 2} \mathfrak{h}_{n}^{-1} \lambda_{n}(j)\right]^{*} P_{(j)}^{-} \tag{2.4}
\end{equation*}
$$

where $P_{(j)}^{ \pm}$is the spectral projection of $S_{(j)}^{x}$ to the eigenvalue $\pm \frac{1}{2}$. Formula (2.3) can now be used to prove the self-adjointness of H_{n}.

Two free energy densities are associated with H_{n} :

$$
\begin{align*}
\exp \left(-\beta V_{n} f_{n}\right) & =\operatorname{tr}_{\mathfrak{\Im}_{n} \otimes \Omega_{n}}\left[\exp \left(-\beta H_{n}\right)\right] \tag{2.5}\\
\exp \left(-\beta V_{n} f_{n}^{0}\right) & =\operatorname{tr}_{\mathfrak{F}_{n}}\left[\exp \left[-\beta d \Gamma\left(\mathfrak{h}_{n}\right)\right]\right] \tag{2.6}
\end{align*}
$$

Of interest is the limit $n \rightarrow \infty$, such that V_{n} diverges but $\rho=n / V_{n}$ remains constant.

The Hamiltonian (2.1) has the following symmetry. Let the self-adjoint, unitary operator L_{n} on $\mathfrak{F}_{n} \otimes \mathfrak{K}_{n}$ be given by $L_{n}=\Gamma(-1)\left(\prod_{j=1}^{n} 2 S_{(j)}^{z}\right)$; then

[^1]$L_{n} S_{(j)}^{z} L_{n}=S_{(j)}^{z} \quad$ and $\quad L_{n} S_{(j)}^{x} L_{n}=-S_{(j)}^{x} \quad$ for every $j=1,2, \ldots, n$, and $L_{n} d \Gamma(\cdot) L_{n}=d \Gamma(\cdot), \quad L_{n} a(\cdot) L_{n}=-a(\cdot)$. In particular, L_{n} commutes with H_{n}.

Consider the Hamiltonian $H_{n}(h), h \in \mathbb{R}^{n}$, defined by

$$
\begin{equation*}
H_{n}(h)=H_{n}+\sum_{j=1}^{n} h_{j} S_{(j)}^{x} \tag{2.7}
\end{equation*}
$$

where the symmetry of H_{n} implemented by L_{n} is broken if the external field vector h is nonzero. The free energy density associated with $H_{n}(h)$ is written $f_{n}(h)$ and is a concave function of each of the n components of h. Expectation values with respect to the canonical state associated with $H_{n}(h)$ are denoted by $\langle\cdot\rangle_{h}$.

The $n \times n$ matrix Λ_{n} is defined by its matrix elements

$$
\begin{equation*}
A_{n}(j, k) \equiv \operatorname{Re}\left\langle\lambda_{n}(j), \mathfrak{h}_{n}^{-1} \lambda_{n}(k)\right\rangle_{L^{2}\left(\mathscr{Q}_{n}\right)}, \quad j, k \in\{1,2, \ldots, n\} \tag{2.8}
\end{equation*}
$$

It is readily seen that Λ_{n} is positive semidefinite and the multiplicity of the eigenvalue 0 is equal to n minus the number of vectors in $\left\{\lambda_{n}(j): j=1,2, \ldots, n\right\}$ which are real-linearly independent.

3. THE PROOFS

Introduce a bosonic Hamiltonian $H_{n}^{b}(x), x \in \mathbb{R}^{n}$, on \mathfrak{F}_{n} by

$$
\begin{align*}
H_{n}^{b}(x)= & d \Gamma\left(\mathfrak{h}_{n}\right)+V_{n} \sum_{j=1}^{n} x_{j}\left\{V_{n}^{-1 / 2}\left[a^{*}\left(\lambda_{n}(j)\right)+a\left(\lambda_{n}(j)\right)\right]\right. \\
& \left.+\sum_{k=1}^{n} \Lambda_{n}(j, k) x_{k} 1\right\} \tag{3.1}
\end{align*}
$$

and two spin Hamiltonians $\widetilde{H}_{n}^{\mathrm{s}}(h)$ and $\hat{H}_{n}^{\mathrm{s}}(h ; x), h, x \in \mathbb{R}^{n}$, on Ω_{n} by

$$
\begin{align*}
\widetilde{H}_{n}^{\mathrm{s}}(h) & =\sum_{j=1}^{n}\left[\varepsilon_{n}(j) S_{(j)}^{z}+h_{j} S_{(j)}^{x}-V_{n}^{-1} \sum_{k=1}^{n} \Lambda_{n}(j, k) S_{(j)}^{x} S_{(k)}^{x}\right] \tag{3.2}\\
\hat{H}_{n}^{\mathrm{s}}(h ; x) & =\sum_{j=1}^{n}\left\{\varepsilon_{n}(j) S_{(j)}^{z}+\left[h_{j}-2 \sum_{k=1}^{n} \Lambda_{n}(j, k) x_{k}\right] S_{(j)}^{x}\right\}+V_{n} x \Lambda_{n} x 1 \tag{3.3}
\end{align*}
$$

Write $\tilde{f}_{n}^{\mathrm{s}}(h)$ and $\hat{f}_{n}^{\mathrm{s}}(h ; x)$ for the free energy densities associated with (3.2) and (3.3), respectively. Expectation values with respect to a canonical state will be written as angular brackets indexed by the corresponding Hamiltonian or distinctive parameters characterizing it.

Lemma 1:

$$
\begin{aligned}
& \left(-\beta V_{n}\right)^{-1} \log \operatorname{tr}_{\oiint_{n}} \exp \left[-\beta H_{n}^{\mathrm{b}}(x)\right]=f_{n}^{0} \quad \text { for every } \quad x \in \mathbb{R}^{n} \\
& \hat{f}_{n}^{\mathrm{s}}(h ; x)=
\end{aligned}
$$

Proof. An application of (2.2) shows that (3.1) is unitarily equivalent to $d \Gamma\left(\mathfrak{h}_{n}\right)$ for every $x \in \mathbb{R}^{n}$ (see the proof of Lemma 2A). Up to the constant term $V_{n} x A_{n} x 1$, the Hamiltonian (3.3) is the sum of n pairwise commuting operators

$$
\varepsilon_{n}(j) S^{2}+\left(h_{j}-2 \sum_{k=1}^{n} A_{n}(j, k) x_{k}\right) S^{x}
$$

on \mathbb{C}^{2}, each of which has

$$
\pm \frac{1}{2}\left[\varepsilon_{n}(j)^{2}+\left(h_{j}-2 \sum_{k=1}^{n} \Lambda_{n}(j, k) x_{k}\right)^{2}\right]^{1 / 2}
$$

as its eigenvalues.

Lemma 2A:

$$
\tilde{f}_{n}^{\mathrm{s}}(h)-\inf _{x \in \mathbb{R}^{n}} \hat{f}_{n}^{\mathrm{s}}(h ; x) \leqslant f_{n}^{0}+\tilde{f}_{n}^{\mathrm{s}}(h)-f_{n}(h)
$$

Proof. Equivalently,

$$
\begin{equation*}
f_{n}^{0}+\inf _{x \in \mathbb{R}^{n}} \hat{f}_{n}^{\mathrm{s}}(h ; x)-f_{n}(h) \geqslant 0 \tag{}
\end{equation*}
$$

By the first part of Lemma $1, f_{n}^{0}+\hat{f}_{n}^{s}(h ; x)$ is the specific free energy associated with the Hamiltonian $\hat{H}_{n}(h ; x)=H_{n}^{b}(x)+\hat{H}_{n}^{s}(h ; x)$; by Bogoljubov's inequality (see ref. 7 for a proof),

$$
\begin{equation*}
f_{n}^{0}+\hat{f}_{n}^{\mathrm{s}}(h ; x)-f_{n}(h) \geqslant V_{n}^{-1}\left\langle\hat{H}_{n}(h ; x)-H_{n}(h)\right\rangle_{\hat{H}_{n}(h ; x)} \tag{}
\end{equation*}
$$

Now by (3.1), (3.2), and (2.7), the right-hand side of (${ }^{* *}$) is given by

$$
\begin{aligned}
\sum_{j=1}^{n}\{ & \left\{\left[V_{n}^{-1 / 2}\left\langle a^{*}\left(\lambda_{n}(j)\right)+a\left(\lambda_{n}(j)\right)\right\rangle_{H_{n}^{b}(x)}+2 \sum_{k=1}^{n} A_{n}(j, k) x_{k}\right]\right. \\
& \left.\times\left[x_{j}-V_{n}^{-1}\left\langle S_{(j)}^{x}\right\rangle_{\vec{H}_{n}^{s}(h ; x)}\right]\right\}
\end{aligned}
$$

By (2.2),

$$
H_{n}^{\mathrm{b}}(x)=W\left[-V_{n}^{1 / 2} \sum_{j=1}^{n} x_{j} \mathfrak{h}_{n}^{-1} \lambda_{n}(j)\right] d \Gamma\left(\mathfrak{h}_{n}\right) W\left[V_{n}^{1 / 2} \sum_{j=1}^{n} x_{j} \mathfrak{h}_{n}^{-1} \lambda_{n}(j)\right]
$$

Using the formula $W[f]^{*} a(g) W[f]=a(g)+\langle g, f\rangle 1$ and (2.8), one finds

$$
\begin{aligned}
&\left\langle a^{*}\left(\lambda_{n}(k)\right)+a\left(\lambda_{n}(k)\right)\right\rangle_{H_{n}^{\mathrm{b}}(x)} \\
&=\left\langle W\left[V_{n}^{1 / 2} \sum_{j=1} x_{j} \mathfrak{h}_{n}^{-1} \lambda_{n}(j)\right]\right. \\
&\left.\times\left[a^{*}\left(\lambda_{n}(k)\right)+a\left(\lambda_{n}(k)\right)\right] W\left[-V_{n}^{1 / 2} \sum_{j=1} x_{j} \mathfrak{h}_{n}^{-1} \lambda_{n}(j)\right]\right\rangle_{d \Gamma\left(\mathfrak{h}_{n}\right)} \\
&=-V_{n}^{1 / 2} \sum_{j=1}^{n} x_{j}\left(\left\langle\overline{\lambda_{n}(k), \mathfrak{h}_{n}^{-1} \lambda_{n}(j)}\right\rangle+\left\langle\lambda_{n}(k), \mathfrak{h}_{n}^{-1} \lambda_{n}(j)\right\rangle\right) \\
&+\left\langle a^{*}\left(\lambda_{n}(k)\right)+a\left(\lambda_{n}(k)\right)\right\rangle_{d \Gamma\left(\mathfrak{h}_{n}\right)} \\
&=-2 V_{n}^{1 / 2} \sum_{j=1}^{n} A_{n}(j, k) x_{j}
\end{aligned}
$$

Thus, the right-hand side of $\left({ }^{* *}\right)$ is zero for every $x \in \mathbb{R}^{n} ;\left({ }^{*}\right)$ follows by taking the infimum with respect to x.

Bogoljubov's inequality also gives an upper bound on $f_{n}^{0}+f_{n}^{s}(h)$ $f_{n}(h)$; this involves

$$
\begin{equation*}
V_{n}^{-3 / 2} \sum_{v \geqslant 1} \sum_{j=1}^{n}\left\langle\left[\lambda_{n}(j ; v) a_{v}^{*}+\overline{\lambda_{n}(j ; v)} a_{v}\right] S_{(j)}^{x}\right\rangle_{h} \tag{3.4}
\end{equation*}
$$

Bogoljubov and Plechko ${ }^{(3)}$ have devised an alternative method which avoids the problem of estimating (3.4). Fix an arbitrary n, and consider an arbitrary finite number N of boson modes with strictly positive frequencies $\left\{\omega_{n}(v): 1 \leqslant v \leqslant N\right\}$ and associated coupling constants $\left\{\lambda_{n}(j ; v): 1 \leqslant v \leqslant N\right.$, $j=1,2, \ldots, n\}$. The Hamiltonian $H_{n}(h ; N)$ is that obtained from $H_{n}(h)$ by considering only these N modes, and the associated specific free energy will be written $f_{n}(h ; N)$; accordingly, write $f_{n}^{0}(N)$, and $\mathcal{f}_{n}^{\mathrm{s}}(h ; N)$.

Let $\mathbb{A}=\left\{v: 1 \leqslant v \leqslant N, \quad \lambda_{n}(j ; v)=0\right.$ for every $\left.j=1,2, \ldots, n\right\}$, and $\mathbb{B}=\{1,2, \ldots, N\} \backslash \mathbb{A}$. For any set $\tau=\left\{\tau_{v}: \nu \in \mathbb{B}\right\}$ of real numbers in the open interval $(0,1)$, one has the identity

$$
\begin{align*}
H_{n}(h ; N)= & \sum_{v \in \mathbb{A}} \omega_{n}(v) a_{v}^{*} a_{v}+\sum_{v \in \mathbb{B}}\left(1-\tau_{v}\right) \omega_{n}(v) a_{v}^{*} a_{v}+\tilde{H}_{n}^{s}(h ; N ; \tau) \\
& +\sum_{v \in \mathbb{B}} \tau_{v} \omega_{n}(v) \mathfrak{b}_{v}(\tau) * \mathfrak{b}_{v}(\tau) \tag{3.5}
\end{align*}
$$

where

$$
\begin{align*}
\tilde{H}_{n}^{s}(h ; N ; \tau) & =\sum_{j=1}^{n}\left[\varepsilon_{n}(j) S_{(j)}^{z}+h_{j} S_{(j)}^{x}-V_{n}^{-1} \sum_{k=1}^{n} \Lambda_{n}^{N}(j, k ; \tau) S_{(j)}^{x} S_{(k)}^{x}\right] \tag{3.6}\\
A_{n}^{N}(j, k ; \tau) & =\operatorname{Re} \sum_{v \in \mathbb{E}}\left[\tau_{v} \omega_{n}(v)\right]^{-1} \overline{\lambda_{n}(j ; v)} \lambda_{n}(k ; v) \tag{3.7}\\
\mathfrak{b}_{v}(\tau) & =a_{v}+V_{n}^{-1 / 2}\left[\tau_{v} \omega_{n}(v)\right]^{-1} \sum_{j=1}^{n} \lambda_{n}(j ; v) S_{(j)}^{x} \tag{3.8}
\end{align*}
$$

Let $f_{n}^{0}(N ; \tau)$ be the specific free energy of

$$
\sum_{v \in \mathbb{A}} \omega_{n}(v) a_{v}^{*} a_{v}+\sum_{v \in \mathbb{B}}\left(1-\tau_{v}\right) \omega_{n}(v) a_{v}^{*} a_{v}
$$

and write $\tilde{f}_{n}^{\mathrm{s}}(h ; N ; \tau)$ for that of (3.6). Since the last term in (3.5) is positive, $f_{n}^{0}(N ; \tau)+\widetilde{f}_{n}^{s}(h ; N ; \tau) \leqslant f_{n}(h ; N)$ by Bogoljubov's inequality. Thus,

$$
\begin{align*}
& f_{n}^{0}(N)+\tilde{f}_{n}^{\mathrm{s}}(h ; N)-f_{n}(h ; N) \\
& \quad \leqslant\left[f_{n}^{0}(N)-f_{n}^{0}(N ; \tau)\right]+\left[\tilde{f}_{n}^{\mathrm{s}}(h ; N)-\tilde{f}_{n}^{\mathrm{s}}(h ; N ; \tau)\right] \tag{3.9}
\end{align*}
$$

Using Bogoljubov's inequality and the familiar formula for $f_{n}^{0}(N ; \tau)$, one has

$$
\begin{align*}
f_{n}^{0}(N) & -f_{n}^{0}(N ; \tau) \\
& \leqslant V_{n}^{-1} \sum_{v \in \mathbb{B}} \tau_{v} \omega_{n}(v)\left\langle a_{v}^{*} a_{v}\right\rangle_{(N ; \tau)} \\
& =-\sum_{v \in \mathbb{B}} \tau_{v}\left(\partial f_{n}^{0} / \partial \tau_{v}\right)(N ; \tau) \\
& =V_{n}^{-1} \sum_{v \in \mathbb{B}} \tau_{v} \omega_{n}(v)\left(e^{\beta\left(1-\tau_{v}\right) \omega_{n}(v)}-1\right)^{-1} \\
& \leqslant\left(\beta V_{n}\right)^{-1} \sum_{v \in \mathbb{B}} \tau_{v}\left(1-\tau_{v}\right)^{-1} \tag{3.10}
\end{align*}
$$

Also using Bogoljubov's inequality and $-\frac{1}{2} 1 \leqslant S^{x} \leqslant \frac{1}{2} 1$, one finds

$$
\begin{align*}
\tilde{f}_{n}^{\mathrm{s}}(h ; N)- & \widetilde{f}_{n}^{\mathrm{s}}(h ; N ; \tau) \\
\leqslant & V_{n}^{-2} \sum_{v \in \mathbb{B}}\left[\left(\tau_{v}^{-1}-1\right) \omega_{n}(v)^{-1}\right. \\
& \left.\times \operatorname{Re} \sum_{j, k=1}^{n} \overline{\lambda_{n}(j ; v)} \lambda_{n}(k ; v)\left\langle S_{(j)}^{x} S_{(k)}^{x}\right\rangle_{(h ; N ; \tau)}\right] \\
\leqslant & \left(2 V_{n}\right)^{-2} \sum_{v \in \mathbb{B}}\left(1-\tau_{v}\right) \tau_{v}^{-1} \omega_{n}(v)^{-1}\left[\sum_{j=1}^{n}\left|\lambda_{n}(j ; v)\right|\right]^{2} \tag{3.11}
\end{align*}
$$

Inserting (3.10) and (3.11) into (3.9), one obtains

$$
\begin{align*}
& {\left[f_{n}^{0}(N)+\widetilde{f}_{n}^{\mathrm{s}}(h ; N)\right]-f_{n}(h ; N)} \\
& \quad \leqslant\left(\beta V_{n}\right)^{-1} \sum_{v \in \mathbb{B}} \tau_{v}\left(1-\tau_{v}\right)^{-1} \\
& \quad+\left(2 V_{n}\right)^{-2} \sum_{v \in \mathbb{B}}\left(1-\tau_{v}\right) \tau_{v}^{-1} \omega_{n}(v)^{-1}\left[\sum_{j=1}^{n}\left|\lambda_{n}(j ; v)\right|\right]^{2} \tag{3.12}
\end{align*}
$$

The infimum of the right-hand side of (3.12) with respect to τ is assumed at

$$
\begin{equation*}
\tau_{v}=\frac{\beta^{1 / 2} \omega_{n}(v)^{-1 / 2} \sum_{j=1}^{n}\left|\lambda_{n}(j ; v)\right|}{2 V_{n}^{1 / 2}+\beta^{1 / 2} \omega_{n}(v)^{-1 / 2} \sum_{j=1}^{n}\left|\lambda_{n}(j ; v)\right|} \tag{3.13}
\end{equation*}
$$

which lies in $(0,1)$ by virtue of the definition of \mathbb{R}. Thus,

$$
\begin{align*}
& f_{n}^{0}(N)+f_{n}^{\mathrm{s}}(h ; N)-f_{n}(h ; N) \\
& \quad \leqslant V_{n}^{-1}\left(\beta V_{n}\right)^{-1 / 2} \sum_{v \geqslant 1}^{N} \omega_{n}(v)^{-1 / 2} \sum_{j=1}^{n}\left|\lambda_{n}(j ; v)\right| \tag{3.14}
\end{align*}
$$

For fixed n, it follows that $f_{n}^{0}(N), f_{n}^{\mathrm{s}}(h ; N)$, and $f_{n}(h ; N)$ converge to f_{n}^{0}, $\bar{f}_{n}^{s}(h)$, and $f_{n}(h)$ respectively, as $N \rightarrow \infty$, so that the following result is proved.

Lemma 2B:

$$
f_{n}^{0}+\check{f}_{n}^{\mathrm{s}}(h)-f_{n}(h) \leqslant V_{n}^{-1}\left(\beta V_{n}\right)^{-1 / 2} \sum_{v \geqslant 1} \omega_{n}(v)^{-1 / 2} \sum_{j=1}^{n}\left|\lambda_{n}(j ; v)\right|
$$

The limit of $\tilde{f}_{n}^{\mathrm{s}}(h)$ has been recently obtained by Duffield and Pulè ${ }^{(6)}$ in their analysis of the BCS model. Their result, which combines largedeviation methods with Berezin-Lieb bounds, is the following.

Theorem 2 (Duffield and Pulè). If conditions (C1) and (C2) are satisfied and there exists a real-valued continuous function h on $[0,1]$ such that

$$
\text { (C0) } \quad \lim _{n \rightarrow \infty} \sup _{j \in\{1,2, \ldots, n\}}\left|h_{j}-h(j / n)\right|=0
$$

then

$$
\begin{aligned}
\tilde{f}^{s}(h)= & \lim _{\substack{n \rightarrow \infty \\
\rho=\text { const }}} f_{n}^{s}(h) \\
= & \rho \inf _{\substack{r, s \in \mathcal{X}_{R}^{\infty}([0,1]) \\
|s| \leqslant r \leqslant 1}}\left(\int _ { 0 } ^ { 1 } \left\{-\beta^{-1} I(r(t))+\frac{1}{2} h(t) s(t)\right.\right. \\
& \left.-\frac{1}{2}|\varepsilon(t)|\left[r(t)^{2}-s(t)^{2}\right]^{1 / 2}\right\} d t \\
& \left.-\frac{1}{4} \rho \int_{0}^{1} \int_{0}^{1} A\left(t, t^{\prime}\right) s(t) s\left(t^{\prime}\right) d t d t^{\prime}\right)
\end{aligned}
$$

Remark 1. The proofs of ref. 6 apply without change under the slightly stronger assumptions $h_{j}=h(j / n), \varepsilon_{n}(j)=\varepsilon(j / n)$, and $\Lambda_{n}(j, k)=$ $\Lambda(j / n, k / n)$, but can be adapted to accommodate (C 0$)-(\mathrm{C} 2)$.

The $\inf _{x \in \mathbb{R}^{n}} \hat{f}_{n}^{s}(h ; x)$ is discussed in Appendix A; one has the following result:

Lemma 3. Under the assumptions (C0)-(C2),

$$
\lim _{\substack{n \rightarrow \infty \\ \rho=\text { const }}} \inf _{x \in \mathbb{R}^{n}} \hat{f}_{n}^{\mathrm{s}}(h ; x)=\tilde{f}^{\mathrm{s}}(h)
$$

Proof. Let $M_{n}=\inf _{x \in \mathbb{R}^{n}} \hat{f}_{n}^{\mathrm{s}}(h ; x) ;$ by Lemma A1, setting $s_{j}=$ $r_{j} \sin \left(\vartheta_{j}\right)$,

$$
\begin{aligned}
M_{n}= & \inf _{\left|s_{j}\right| \leqslant r_{j} \leqslant 1}\left(V_{n}^{-1} \sum_{j=1}^{n}\left[-\beta^{-1} I\left(r_{j}\right)-\frac{1}{2}\left|\varepsilon_{n}(j)\right|\left(r_{j}^{2}-s_{j}^{2}\right)^{1 / 2}+\frac{1}{2} h_{j} s_{j}\right]\right. \\
& \left.-\frac{1}{4} V_{n}^{-2} \sum_{j=1}^{n} \sum_{k=1}^{n} A_{n}(j, k) s_{j} s_{k}\right)
\end{aligned}
$$

Define L_{n} by replacing $\varepsilon_{n}(j), h_{j}$, and $\Lambda_{n}(j, k)$ in the above expression for M_{n} by $\varepsilon(j / n), h(j / n)$, and $\Lambda(j / n, k / n)$, respectively, where $\varepsilon(\cdot), h(\cdot)$, and $\Lambda(\cdot, \cdot)$ are the functions given by conditions (C0)-(C2). As in Theorem 3 of ref. 6 , one proves that $L_{n} \rightarrow \vec{f}^{\mathrm{s}}(h)$ as $n \rightarrow \infty$ with $\rho=$ const. Now,

$$
\begin{aligned}
\left|M_{n}-L_{n}\right| \leqslant & \sup _{\left|s_{j}\right| \leqslant r_{j} \leqslant 1} \left\lvert\, V_{n}^{-1} \sum_{j=1}^{n}\left\{\frac{1}{2}\left[|\varepsilon(j / n)|-\left|\varepsilon_{n}(j)\right|\right]\left(r_{j}^{2}-s_{j}^{2}\right)^{1 / 2}\right.\right. \\
& \left.+\frac{1}{2}\left[h_{j}-h(j / n)\right] s_{j}\right\} \\
& \left.+\frac{1}{4} V_{n}^{-2} \sum_{j=1}^{n} \sum_{k=1}^{n}\left\{\left[\Lambda(j / n, k / n)-\Lambda_{n}(j, k)\right] s_{j} s_{k}\right\} \right\rvert\, \\
\leqslant & \frac{1}{2} \rho n^{-1} \sum_{j=1}^{n}\left\{\left\|\varepsilon (j / n) \left|-\left|\varepsilon_{n}(j) \|+\left|h_{j}-h(j / n)\right|\right\}\right.\right.\right. \\
& +\frac{1}{4} \rho^{2} n^{-2} \sum_{j=1}^{n} \sum_{k=1}^{n}\left|A(j / n, k / n)-A_{n}(j, k)\right|
\end{aligned}
$$

so that, by (C 0$)-(\mathrm{C} 2), M_{n}-L_{n} \rightarrow 0$ as $n \rightarrow \infty$ with $\rho=\mathrm{const}$.
Remark 2. One can prove

$$
\lim _{n \rightarrow \infty}\left[\widetilde{f}_{n}^{\mathrm{s}}(h)-\inf \hat{f}_{n}^{\mathrm{s}}(h ; x)\right]=0
$$

directly by the "approximating Hamiltonian method," using an idea of ref. 1; one has to assume that n^{-1} (number of nonzero eigenvalues of $\left.\Lambda_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$; moreover, the positivity of Λ_{n} is used. ${ }^{(11)}$

The proof of Theorem 1 is obtained by combining Lemmas 2A, 2B, and 3 and Theorem 2.

One can recover the results of ref. 10, which are valid for the homogeneous case: $\varepsilon_{n}(j)=\varepsilon_{n}, \lambda_{n}(j ; v)=\lambda_{n}(v)$, and $h_{j}=h$, for all $j=1,2, \ldots, n .^{3}$ Condition (CO) is trivially met; conditions (C1) and (C2) demand the existence of real numbers ε and $A(\geqslant 0)$ such that $\varepsilon_{n} \rightarrow \varepsilon$ and $\left\langle\lambda_{n}, \mathfrak{b}_{n}^{-1} \lambda_{n}\right\rangle_{L^{2}\left(\mathscr{A}_{n}\right)} \rightarrow \Lambda$.

Lemma 4. In the homogeneous case

$$
\tilde{f}^{s}(h)=-\rho \sup _{0 \leqslant z, u \leqslant 1}\left[\beta^{-1} I(u)+\frac{1}{2}|h| u\left(1-z^{2}\right)^{1 / 2}+\frac{1}{2}|\varepsilon| u z+\frac{1}{4} \rho A u^{2}\left(1-z^{2}\right)\right]
$$

Proof. By Theorem 2, choosing $r(t)=r$ and $s(t)=s$ a.e., one has

$$
\begin{aligned}
-\tilde{f}^{\mathrm{s}}(h) / \rho \geqslant & \sup _{|s| \leqslant r \leqslant 1}\left[\beta^{-1} I(r)-\frac{1}{2} h s+\frac{1}{2}|\varepsilon|\left(r^{2}-s^{2}\right)^{1 / 2}+\frac{1}{4} \rho A s^{2}\right] \\
= & \sup _{0 \leqslant x, r \leqslant 1}\left[\beta^{-1} I(r)+\frac{1}{2}|h| r x\right. \\
& \left.+\frac{1}{2}|\varepsilon| r\left(1-x^{2}\right)^{1 / 2}+\frac{1}{4} \rho A r^{2} x^{2}\right]
\end{aligned}
$$

For r and s in $L_{\mathbb{R}}^{\infty}([0,1])$ with $|s| \leqslant r \leqslant 1$ (all integrals are over $[0,1]$),

$$
\begin{aligned}
& \int\left[r(t)^{2}-s(t)^{2}\right]^{1 / 2} d t \\
&=\int[r(t)-s(t)]^{1 / 2}[r(t)+s(t)]^{1 / 2} d t \\
& \leqslant\left\{\int[r(t)-s(t)] d t \cdot \int[r(t)+s(t)] d t\right\}^{1 / 2} \\
&=\left\{\left[\int r(t) d t\right]^{2}-\left[\int s(t) d t\right]^{2}\right\}^{1 / 2}
\end{aligned}
$$

by the Schwarz inequality; since I is concave,

$$
\begin{aligned}
-\tilde{f}^{s}(h) / \rho \leqslant & \sup _{\substack{r, s \in L_{R}^{\infty}([0,1]) \\
|s| \leqslant r \leqslant 1}}\left(\beta^{-1} I\left(\int r(t) d t\right)\right. \\
& -\frac{1}{2} h \int s(t) d t+\frac{1}{4} \rho \Lambda\left[\int s(t) d t\right]^{2} \\
& \left.+\frac{1}{2}|\varepsilon|\left\{\left[\int r(t) d t\right]^{2}-\left[\int s(t) d t\right]^{2}\right\}^{1 / 2}\right) \\
= & \sup _{|s| \leqslant r \leqslant 1}\left[\beta^{-1} I(r)-\frac{1}{2} h s+\frac{1}{2}|\varepsilon|\left(r^{2}-s^{2}\right)^{1 / 2}+\frac{1}{4} \rho A s^{2}\right]
\end{aligned}
$$

[^2]
4. THE PHASE TRANSITION

The variational problem determining $\tilde{f}^{s}(h)$, and thus $f(h)$, is

$$
\begin{align*}
\mathscr{I}(h)= & \sup _{\substack{r, s \in L_{\mathbb{R}}^{\infty}([0,1]) \\
|s| \leqslant r \leqslant 1}}\left(\int _ { 0 } ^ { 1 } \left\{\beta^{-1} I(r(t))\right.\right. \\
& +\frac{1}{2}|\varepsilon(t)|\left[r(t)^{2}-s(t)^{2}\right]^{1 / 2} \\
& \left.\left.-\frac{1}{2} h(t) s(t)\right\} d t+\frac{1}{4} \rho \int_{0}^{1} \int_{0}^{1} A\left(t, t^{\prime}\right) s(t) s\left(t^{\prime}\right) d t d t^{\prime}\right) \tag{4.1}
\end{align*}
$$

For $\Lambda\left(t, t^{\prime}\right) \geqslant 0$ (and $h=$ const) this problem ${ }^{4}$ is solved by Duffield and Pulè ${ }^{(6)}$; most of their arguments apply to the case of arbitrary A.

Notice that if $h=0$ and (r, s) is a maximizer for (4.1), then so is $(r,-s)$. The function I is concave, with derivative -arctanh. The r variation can be done as in ref. 6; for $s \in L_{R}^{\infty}([0,1])$ with $|s| \leqslant 1$, let $r_{s}:[0,1] \rightarrow \mathbb{R}$ be defined (a.e.) to be 1 where $|s|=1$, and otherwise as the largest zero in the interval $[|s(t)|, 1]$ of the function ${ }^{5}$

$$
\begin{equation*}
x \rightarrow \frac{1}{2} \beta|\varepsilon(t)| x-\left[x^{2}-s(t)^{2}\right]^{1 / 2} \operatorname{arctanh}(x) \tag{4.2}
\end{equation*}
$$

Then, if \mathscr{B} denotes the unit ball of $L_{R}^{\infty}([0,1])$, one has

$$
\begin{equation*}
\mathscr{I}(h)=\sup _{s \in \mathscr{R}}\{\mathscr{V}(s ; h)\} \tag{4.3}
\end{equation*}
$$

where

$$
\begin{align*}
\mathscr{V}(s ; h)= & \int_{0}^{1}\left\{\beta^{-1} I\left(r_{s}(t)\right)+\frac{1}{2}|\varepsilon(t)|\left[r_{s}(t)^{2}-s(t)^{2}\right]^{1 / 2}\right. \\
& \left.-\frac{1}{2} h(t) s(t)\right\} d t+\frac{1}{4} \rho \int_{0}^{1} \int_{0}^{1} \Lambda\left(t, t^{\prime}\right) s(t) s\left(t^{\prime}\right) d t d t^{\prime} \tag{4.4}
\end{align*}
$$

For $h=0$, one has inversion symmetry, $\mathscr{V}(s ; 0)=\mathscr{V}(-s ; 0)$. Let K be the self-adjoint, integral operator on $L_{\mathbb{R}}^{2}([0,1])$ defined by the kernel $A ; K$ is compact. Consider the continuous function g_{β} on $[0,1]$ given by

$$
g_{\beta}(t)= \begin{cases}(\beta / 2)^{1 / 2}, & \text { if } \varepsilon(t)=0 \tag{4.5}\\ \left(\left\{\tanh \left[\frac{1}{2} \beta|\varepsilon(t)|\right]\right\} /|\varepsilon(t)|\right)^{1 / 2} & \text { if } \quad \varepsilon(t) \neq 0\end{cases}
$$

[^3]and let G_{β} be the (bounded, positive) operator on $L_{R}^{2}([0,1])$ of multiplication by g_{β}. Let $U_{\beta}^{\rho}=\rho G_{\beta} K G_{\beta}$, i.e.,
\[

$$
\begin{equation*}
\left\{U_{\beta}^{\rho} \psi\right\}(t)=\rho g_{\beta}(t) \int_{0}^{1} g_{\beta}\left(t^{\prime}\right) \Lambda\left(t, t^{\prime}\right) \psi\left(t^{\prime}\right) d t^{\prime} \tag{4.6}
\end{equation*}
$$

\]

Define $\Phi_{\beta}^{\rho}(s ; t)$ (a.e.) by

$$
\Phi_{\beta}^{\rho}(s ; t)=\rho\{K s\}(t)- \begin{cases}2 \beta^{-1} \operatorname{arctanh} s(t) & \varepsilon(t)=0 \tag{4.7}\\ |\varepsilon(t)| s(t) /\left[r_{s}(t)^{2}-s(t)^{2}\right]^{1 / 2} & \varepsilon(t) \neq 0\end{cases}
$$

and notice that $\Phi_{\beta}^{\rho}(-s ; \cdot)=-\Phi_{\beta}^{\rho}(s ; \cdot)$.
The solution of (4.1) for $h=0$ is obtained from the following two results, which will be proved in Appendix B by adjusting the arguments of ref. 6:

Theorem 3. If $\left\|U_{\beta}^{\rho}\right\| \leqslant 1$, then

$$
\mathscr{I}(0)=\mathscr{V}(0 ; 0)=\beta^{-1} \int_{0}^{1} \log \left\{2 \cosh \left[\frac{1}{2} \beta \varepsilon(t)\right]\right\} d t
$$

Theorem 4. If $\left\|U_{\beta}^{\rho}\right\|>1$, then there exists a nonzero $s_{*} \in \mathscr{B}$ such that $\mathscr{I}(0)=\mathscr{V}\left(s_{*} ; 0\right)=\mathscr{V}\left(-s_{*} ; 0\right)$, where s_{*} and $-s_{*}$ are solutions of the Euler-Lagrange equation $\Phi_{\beta}^{\rho}(s ; \cdot)=0$. Moreover,

$$
\begin{aligned}
\mathscr{I}(0)= & \mathscr{V}\left(\pm s_{*} ; 0\right) \\
= & \beta^{-1} \int_{0}^{1} \log \left(2 \cosh \left\{\frac{1}{2} \beta\left[\varepsilon(t)^{2}+k_{\beta}(t)^{2}\right]^{1 / 2}\right\}\right) d t \\
& -\frac{1}{4} \int_{0}^{1} \frac{\tanh \left\{\frac{1}{2} \beta\left[\varepsilon(t)^{2}+k_{\beta}(t)^{2}\right]^{1 / 2}\right\}}{\left[\varepsilon(t)^{2}+k_{\beta}(t)^{2}\right]^{1 / 2}} k_{\beta}(t)^{2} d t
\end{aligned}
$$

where $k_{\beta} \neq 0$ satisfies

$$
k_{\beta}(t)=\rho \int_{0}^{1} \Lambda\left(t, t^{\prime}\right) \frac{\tanh \left\{\frac{1}{2} \beta\left[\varepsilon\left(t^{\prime}\right)^{2}+k_{\beta}\left(t^{\prime}\right)^{2}\right]^{1 / 2}\right\}}{\left[\varepsilon\left(t^{\prime}\right)^{2}+k_{\beta}\left(t^{\prime}\right)^{2}\right]^{1 / 2}} k_{\beta}\left(t^{\prime}\right) d t^{\prime}
$$

Remark 3. Most likely, s_{*} and $-s_{*}$ are the only nonzero solutions of the Euler-Lagrange equation if K is positive, but I am unable to prove this.

The map $\beta \rightarrow\left\|U_{\beta}^{o}\right\|$ is strictly increasing with $\lim _{\beta \downarrow 0}\left\|U_{\beta}^{o}\right\|=0$, so that one can identify a possibly infinite critical reciprocal temperature β_{c} such that if $\beta<\beta_{c}$, then $\left\|U_{\beta}^{\rho}\right\|<1$, and if $\beta>\beta_{c}$, then $\left\|U_{\beta}^{\rho}\right\|>1$. For $\beta \leqslant \beta_{c}, \tilde{f}^{\text {s }}$ (and thus f) is independent of the interaction: the system is thermodynamically equivalent to a noninteracting system of bosons and spins. Qualitatively, the results are identical to those of refs. 9 and 10.

As an illustration, in the homogeneous case, one has

$$
\left\|U_{\beta}^{\rho}\right\|=\rho A\left\{\begin{array}{lll}
\frac{1}{2} \beta & \text { if } \quad \varepsilon=0 \\
\tanh \left(\frac{1}{2} \beta|\varepsilon|\right) /|\varepsilon| & \text { if } \quad \varepsilon \neq 0
\end{array}\right.
$$

and thus, as in ref. 10 ,

$$
\beta_{c}= \begin{cases}2 \operatorname{arctanh}(|\varepsilon| / \rho \Lambda) /|\varepsilon| & \text { if } \varepsilon \neq 0 \text { and }|\varepsilon|<\rho \Lambda \\ +\infty & \text { if } \varepsilon \neq 0 \text { and }|\varepsilon| \geqslant \rho \Lambda \\ 2 / \rho \Lambda & \text { if } \varepsilon=0\end{cases}
$$

Finally, one can proceed, as in ref. 6, to obtain the thermodynamic limit of the equilibrium expectation of the average spin polarization in x direction when $h(t)=\hbar$ (by symmetry, this limit is zero for $h=0$), and then consider the limit $h \rightarrow 0$. The result is qualitatively the same as that for the homogeneous case, ${ }^{(10)}$ namely: the limit is zero for $\beta \leqslant \beta_{c}$ and not zero if $\beta>\beta_{c}$, with different sign depending on whether $\not \hbar \uparrow 0$ or $h \downarrow 0$.

APPENDIX A. DISCUSSION OF $\inf _{x \in \mathbb{R}^{n}} \hat{\boldsymbol{f}}_{\boldsymbol{n}}^{\mathbf{s}}(\boldsymbol{h} ; \boldsymbol{x})$
Lemma A1. Let I on $[0,1]$ be defined as in Theorem 1. Then,

$$
\begin{aligned}
& \inf _{x \in \mathbb{R}^{n}} \hat{f}_{n}^{\mathrm{s}}(h ; x) \\
&= \inf _{\substack{r_{j} \in[0,1] \\
\vartheta_{j} \in[0,2 \pi]}}\left\{V _ { n } ^ { - 1 } \sum _ { j = 1 } ^ { n } \left[-\beta^{-1} I\left(r_{j}\right)+\frac{1}{2} \varepsilon_{n}(j) r_{j} \cos \left(\vartheta_{j}\right)\right.\right. \\
&\left.+\frac{1}{2} h_{j} r_{j} \sin \left(\vartheta_{j}\right)-\frac{1}{4} V_{n}^{-1} \sum_{k=1}^{n} A_{n}(j, k) r_{j} r_{k} \sin \left(\vartheta_{j}\right) \sin \left(\vartheta_{k}\right]\right\} \\
&= \inf _{\substack{r_{j} \in[0,1] \\
\vartheta_{j} \in[-1 / 2 \pi, 1 / 2 \pi]}}\left\{V _ { n } ^ { - 1 } \sum _ { j = 1 } ^ { n } \left[-\beta^{-1} I\left(r_{j}\right)-\frac{1}{2}\left|\varepsilon_{n}(j)\right| r_{j} \cos \left(\vartheta_{j}\right)\right.\right. \\
&\left.\left.+\frac{1}{2} h_{j} r_{j} \sin \left(\vartheta_{j}\right)-\frac{1}{4} V_{n}^{-1} \sum_{k=1}^{n} A_{n}(j, k) r_{k} \sin \left(\vartheta_{j}\right) \sin \left(\vartheta_{k}\right)\right]\right\}
\end{aligned}
$$

Proof. One verifies that for a and b real,

$$
\begin{aligned}
& \inf _{\substack{r \in[0,1] \\
y^{2}+z^{2}=1}}\left[-\beta^{-1} I(r)+\frac{1}{2} a r z+\frac{1}{2} b r y\right] \\
& \quad=-\beta^{-1} \log \left\{2 \cosh \left[\frac{1}{2} \beta\left(a^{2}+b^{2}\right)^{1 / 2}\right]\right\}
\end{aligned}
$$

Thus, by Lemma 1,

$$
\begin{aligned}
\hat{f}_{n}^{\mathrm{s}}(h ; x)= & V_{n}^{-1} \inf _{\substack{r_{j} \in[0,1] \\
z_{j}^{+}+v_{j}^{j}=1}} \sum_{j=1}^{n}\left\{-\beta^{-1} I\left(r_{j}\right)+\frac{1}{2} \varepsilon_{n}(j) r_{j} z_{j} .\right. \\
& \left.+\frac{1}{2} r_{j} y_{j}\left[h_{j}-2 \sum_{k=1}^{n} A_{n}(j, k) x_{k}\right]\right\}+x A_{n} x
\end{aligned}
$$

The variation over $x \in \mathbb{R}^{n}$ can be done explicitly (for this, it is convenient to diagonalize Λ_{n}); it follows that

$$
\begin{aligned}
& \inf _{x \in \mathbb{R}^{n}} \hat{f}_{n}^{\mathrm{s}}(h ; x) \\
&= V_{n}^{-1} \inf _{\substack{r_{j} \in[0,1] \\
z_{j}^{2}+v_{j}^{\prime}=1}} \sum_{j=1}^{n}\left[-\beta^{-1} I\left(r_{j}\right)+\frac{1}{2} \varepsilon_{n}(j) r_{j} z_{j}\right. \\
&\left.+\frac{1}{2} h_{j} r_{j} y_{j}-\frac{1}{4} V_{n}^{-1} \sum_{k=1}^{n} r_{j} r_{k} y_{j} y_{k} A_{n}(j, k)\right]
\end{aligned}
$$

which proves the first claim upon setting $z_{j}=\cos \left(\vartheta_{j}\right), \vartheta_{j} \in[0,2 \pi]$. The second claim is obvious.

APPENDIX B. SOLUTION OF THE VARIATIONAL PROBLEM FOLLOWING DUFFIELD AND PULE ${ }^{(6)}$

Write \mathscr{I} for $\mathscr{I}(0)$ and $\mathscr{V}(s)$ for $\mathscr{V}(s ; 0)$.
Proof of Theorem 3. This is a minor adjustment of the corresponding result of ref. 6 , to accommodate the fact that the present variation is over \mathscr{B} and not its positive part. Let A be the support of ε. For arbitrary $s \in \mathscr{B}$ and $0<p<1$, put $F(p)=\mathscr{F}(p s)$. Now, F is differentiable with derivative (integrals with unspecified domain are over $[0,1]$)

$$
\begin{aligned}
F^{\prime}(p)= & \frac{1}{2} p \rho \iint A\left(t, t^{\prime}\right) s(t) s\left(t^{\prime}\right) d t d t^{\prime} \\
& -\frac{1}{2} p \int_{A}|\varepsilon(t)| s(t)^{2}\left[r_{p s}(t)^{2}-p^{2} s(t)^{2}\right]^{-1 / 2} d t \\
& -\beta^{-1} \int_{A^{c}} \operatorname{arctanh}[p|s(t)|]|s(t)| d t
\end{aligned}
$$

Using the inequalities

$$
\begin{aligned}
& |s(t)| \operatorname{arctanh}[p|s(t)|] \geqslant p s(t)^{2} \\
& \quad\left[r_{s}(t)^{2}-s(t)^{2}\right]^{1 / 2} \leqslant \tanh \left[\frac{1}{2} \beta|\varepsilon(t)|\right]
\end{aligned}
$$

one obtains

$$
F^{\prime}(p) \leqslant \frac{1}{2} p\left\langle\hat{s},\left\{U_{\beta}^{\rho}-1\right\} \hat{s}\right\rangle_{\left.L_{\mathrm{R}}^{2}(0,1]\right)}
$$

where $\hat{s}(t)=s(t) / g_{\beta}(t)$. The assumption $\left\|U_{\beta}^{\rho}\right\| \leqslant 1$ implies $F^{\prime}(p) \leqslant 0$, so that $\mathscr{V}(p s) \leqslant \mathscr{V}(0)$, and by continuity $\mathscr{V}(s) \leqslant \mathscr{V}(0)$. One can compute $\mathscr{V}(0)$ using $r_{0}(t)=\tanh \left[\frac{1}{2} \beta|\varepsilon(t)|\right]$.

The proof of Theorem 4 is broken up into a series of lemmas all of which have their origins in ref. 6 .

Lemma B1. There exists $s \in \mathscr{B}$ such that $\mathscr{I}(h)=\mathscr{V}(s ; h)$.
Proof. See Theorem 5 of ref. 6.
Lemma B2. If $\left\|U_{\beta}^{\rho}\right\|>1$, then $\mathscr{I}>\mathscr{V}(0)$.
Proof. Let $s \in \mathscr{B}$ with $\mathscr{V}(s)=\mathscr{I}$. Since U_{β}^{ρ} is compact, $\left\|U_{\beta}^{\rho}\right\|$ is an eigenvalue; let ξ be a corresponding eigenvector. Define $\xi_{n} \in L_{\mathbb{R}}^{\infty}([0,1])$ by

$$
\xi_{n}(t)= \begin{cases}\xi(t) & \text { if }|\xi(t)| \leqslant n \\ 0 & \text { otherwise }\end{cases}
$$

a.e. It follows that

$$
\left\langle\xi_{n},\left\{U_{\beta}^{\rho}-1\right\} \xi_{n}\right\rangle_{\left.L_{R}^{2}(0,1]\right)} \rightarrow\left\|U_{\beta}^{\rho}\right\|-1(>0!) \quad \text { as } \quad n \rightarrow \infty
$$

Choose m such that

$$
\left\langle\xi_{m},\left\{U_{\beta}^{o}-1\right\} \xi_{m}\right\rangle_{L_{k}^{2}[(0,1])}>0
$$

and let $\hat{s}=\xi_{m} g_{\beta}$. The proof then proceeds as in Lemma 3 of ref. 6 .
Lemma B3. If $s \in \mathscr{B}$ and $\mathscr{I}=\mathscr{V}(s)$, then $\{t \in[0,1]:|s(t)|=1\}$ has zero measure.

Proof. Proceed as in the proof of Lemma 2 of ref. 6, with the set $\{t \in[0,1]:|s(t)|=1\}$.

Lemma B4. If $s \in \mathscr{B}$ and $\mathscr{I}=\mathscr{V}(s)$, then $\Phi_{\beta}^{\rho}(s ; \cdot)=0$.
Proof. This is an adaptation of the proof of Theorem 6 of ref. 6. Let $0<\delta<1$, and take $\xi \in L_{R}^{\infty}([0,1])$ with essential support contained in
$A_{\delta} \equiv\{t \in[0,1]:|s(t)|<1-\delta\}$. For $|p|$ sufficiently small, $s_{p}=s(1+p \xi)$ lies in \mathscr{B}. Let $F(t)=\mathscr{V}\left(s_{p}\right)$. Taking the derivative at $p=0$, one obtains

$$
\begin{equation*}
\frac{1}{2} \int_{A_{\delta}} \xi(t) s(t) \Phi_{\beta}^{\rho}(s ; t) d t=0 \tag{*}
\end{equation*}
$$

Now take $\xi=s \Phi_{\beta}^{\rho}(s ; \cdot)$ on A_{δ} and $\xi=0$ on $A_{\delta}^{c} ;\left({ }^{*}\right)$ implies that $s \Phi(s ; \cdot)=0$ on A_{δ}. Since δ was arbitrary, Lemma B3 implies that $s \Phi_{\beta}^{\rho}(s ; \cdot)=0$. Thus, $\Phi_{\beta}^{\rho}(s ; \cdot)=0$ on B, the essential support of s; but by the definition of $\Phi_{\beta}^{p}(s ; \cdot)$, $\Phi_{\beta}^{\rho}(s ; \cdot)=0$ on B^{c}.

The first part of Theorem 4 follows from Lemmas B2-B4; the rest of the claim follows as in ref. 6.

ACKNOWLEDGMENTS

I am grateful to N. G. Duffield and J. V. Pulè for generously providing and explaining their results, and thank them and J. T. Lewis for discussions and encouragement.

REFERENCES

1. N. N. Bogoljubov, Jr., Physica 32:933 (1966).
2. N. N. Bogoljubov, Jr., J. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, and N. S. Tonchev, Russ. Math. Surv. 39:1 (1984).
3. N. N. Bogoljubov, Jr., and V. N. Plechko, Physica 82A:163 (1976).
4. W. Cegła, J. T. Lewis, and G. A. Raggio, Commun. Math. Phys. 118:337 (1988).
5. J. M. Cook, J. Math. Phys. 2:33 (1961).
6. N. G. Duffield and J. V. Pulè, Commun. Math. Phys. 118:475 (1988).
7. J. Ginibre, Commun. Math. Phys. 8:26 (1968).
8. K. Hepp and E. H. Lieb, Ann. Phys. (N.Y.) 76:360 (1973).
9. K. Hepp and E. H. Lieb, Phys. Rev. A 8:2517 (1973).
10. J. T. Lewis and G. A. Raggio, J. Stat. Phys. 50:1201 (1988).
11. G. A. Raggio, unpublished results.
12. V. A. Zagrebnov, Z. Phys. B 55:75 (1984).

[^0]: ${ }^{1}$ Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland.

[^1]: ${ }^{2}$ Tensor notation for operators is not used, i.e., $S_{(j)}=1 \otimes S_{(j)}, a(\cdot)=a(\cdot) \otimes 1$, etc.

[^2]: ${ }^{3}$ Condition (C4) is not needed for the results of ref. 10.

[^3]: ${ }^{4}$ The kernel need not be positive; it defines a positive operator. $\Lambda\left(t, t^{\prime}\right)>0$ is used in the uniqueness results of ref. 6 .
 ${ }^{5}$ Notice that $r_{0}(t)=\tanh \left[\frac{1}{2} \beta|\varepsilon(t)|\right]$ a.e., that $r_{-s}=r_{s}$, and that $r_{s}=|s|$ on the set where $\varepsilon(t)=0$.

