G. A. Raggio¹

Received February 15, 1988; revision received May 16, 1988

For *n* spins 1/2 coupled linearly to a boson field in a volume V_n , the existence of the specific free energy is proved in the limit $n \to \infty$, $V_n \to \infty$ with $n/V_n = \text{const}$. The interaction is essentially of the mean field type, in as much as it is proportional to $1/\sqrt{V_n}$; the coupling constants are allowed to be spin dependent. A variational expression is obtained for the limiting specific free energy, and a critical temperature is identified above which the system behaves as if there were no coupling at all.

KEY WORDS: Spins coupled to a boson field; thermodynamics of two-level atoms interacting with radiation; phase transition.

1. INTRODUCTION AND MAIN RESULT

Consider the Hamiltonian

$$H_{n} = \sum_{v \ge 1} \omega_{n}(v) a_{v}^{*} a_{v} + V_{n}^{-1/2} \sum_{v \ge 1} \sum_{j=1}^{n} \left\{ \lambda_{n}(j; v) a_{v}^{*} + \overline{\lambda_{n}(j; v)} a_{v} \right\} S_{(j)}^{x}$$
$$+ \sum_{j=1}^{n} \varepsilon_{n}(j) S_{(j)}^{z}$$

for *n* spins 1/2—described by the spin operators $\{S_{(j)}^{\alpha}: j = 1, 2, ..., n; \alpha = x, y, z\}$, with $[S_{(j)}^{\alpha}, S_{(k)}^{\nu}] = i\delta_{jk}S_{(j)}^{z}$ and cyclic permutations—interacting linearly with a countable number of bosonic degrees of freedom described by creation/annihilation operators $\{a_{\nu}^{*}, a_{\nu}: \nu \ge 1\}$, with $[a_{\nu}, a_{\nu}^{*}] \subset \delta_{\nu,\nu'}$. The strictly positive bosonic frequencies $\omega_{n}(\nu)$ are assumed to satisfy

$$\sum_{v \ge 1} e^{-\beta \omega_n(v)} < \infty \qquad \text{for} \quad \beta > 0$$

¹ Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland.

the coupling constants $\{\lambda_n(j; v): v \ge 1, j = 1, 2, ..., n\}$ are complex numbers satisfying

$$\sum_{\nu \ge 1} |\lambda_n(j;\nu)|^2 < \infty \qquad \text{for every} \quad j = 1, 2, ..., n$$

and the $\{\varepsilon_n(j): j = 1, 2, ..., n\}$ are real. The Hamiltonian arises in a realistic model of atoms (or molecules) interacting with radiation if one accepts to treat the atoms in a two-level approximation and neglects terms that are quadratic in creation or annihilation operators.⁽⁹⁾

The problem is to determine the specific free energy of the system in the thermodynamic limit $n \to \infty$, where V_n , the volume of the system, is proportional to *n*, that is, $\rho = n/V_n$, the density of the spins, is constant. This problem has been solved in a number of particular cases. Hepp and Lieb⁽⁸⁾ treated the case of one bosonic mode, using a rotating-wave approximation for the coupling (Dicke maser model). These same authors then⁽⁹⁾ removed the latter approximation and treated finitely many bosonic modes in the homogeneous case, where the coupling constants and spin frequencies are independent of the spins: $\lambda_n(j; v) = \lambda_n(v)$ and $\varepsilon_n(j) = \varepsilon_n$ for every j = 1, 2, ..., n. Hepp and Lieb also obtained results on the thermodynamic stability for the general (i.e., heterogeneous) model, leaving open the question of the existence of the thermodynamic limit.⁽⁹⁾ Subsequently, the "approximating Hamiltonian method" has been used on the Hamiltonian H_n and its variants.^(2,3,12) The homogeneous case with countably many bosonic modes has been treated in detail⁽¹⁰⁾ using largedeviation methods developed in ref. 4.

Here, the problem is solved for the heterogeneous model using a method developed by Duffield and Pulè in their treatment of the BCS model⁽⁶⁾ supplemented with an idea of Bogoljubov and Plechko.⁽³⁾ It is shown that under certain specified conditions H_n is thermodynamically equivalent (in the sense that the difference of the specific free energies vanishes in the thermodynamic limit) to the Hamiltonian

$$\tilde{H}_n = \sum_{v \ge 1} \omega_n(v) \, a_v^* a_v + \sum_{j=1}^n \varepsilon_n(j) \, S_{(j)}^z - V_n^{-1} \sum_{j,k=1}^n \Lambda_n(j,k) \, S_{(j)}^x S_{(k)}^x$$

where the spin-boson interaction is replaced by an effective quadratic spin-spin interaction:

$$\Lambda_n(j,k) = \operatorname{Re} \sum_{\nu \ge 1} \omega_n(\nu)^{-1} \overline{\lambda_n(j;\nu)} \lambda_n(k;\nu), \qquad j, k = 1, 2, ..., n$$

Moreover, \tilde{H}_n is thermodynamically equivalent to the Hamiltonian

$$\hat{H}_{n}(x) = \sum_{v \ge 1} \omega_{n}(v) a_{v}^{*} a_{v} + \sum_{j=1}^{n} \varepsilon_{n}(j) S_{(j)}^{z}$$
$$+ \sum_{j,k=1}^{n} \Lambda_{n}(j,k) x_{j} \{ V_{n} x_{k} 1 - 2S_{(k)}^{x} \}$$

if the real *n*-vector x is chosen so as to minimize the corresponding specific free energy.

The result is then the following:

Theorem 1. Suppose there exist real-valued continuous functions ε on [0, 1] and Λ on $[0, 1] \times [0, 1]$ such that the following conditions hold:

(C1)
$$\lim_{n \to \infty} \sup_{j \in \{1, 2, \dots, n\}} |\varepsilon_n(j) - \varepsilon(j/n)| = 0$$

(C2)
$$\lim_{n \to \infty} \sup_{j, k \in \{1, 2, \dots, n\}} |\Lambda_n(j, k) - \Lambda(j/n, k/n)| = 0$$

If

(C3)
$$f^{0} = \lim_{\substack{n \to \infty \\ \rho = \text{ const}}} (-\beta V_{n})^{-1} \log \operatorname{tr} \exp\left\{-\beta \sum_{\nu \ge 1} \omega_{n}(\nu) a_{\nu}^{*} a_{\nu}\right\}$$

exist for some $\beta > 0$ and if

(C4)
$$\lim_{n \to \infty} n^{-3/2} \sum_{v \ge 1} \omega_n(v)^{-1/2} \sum_{j=1}^n |\lambda_n(j; v)| = 0$$

then

$$\lim_{\substack{n \to \infty \\ \rho = \text{const}}} (-\beta V_n)^{-1} \log \operatorname{tr} \exp(-\beta H_n)$$

$$= f^{0} - \rho \sup_{\substack{r,s \in L_{\mathbb{R}}^{\infty}([0,1]) \\ |s| \leqslant r \leqslant 1}} \left(\int_{0}^{1} \left\{ \beta^{-1} I(r(t)) + \frac{1}{2} |\varepsilon(t)| \left[r(t)^{2} - s(t)^{2} \right]^{1/2} \right\} dt$$
$$+ \frac{1}{4} \rho \int_{0}^{1} \int_{0}^{1} \Lambda(t, u) s(t) s(u) dt du \right)$$

where

$$I(x) = -\frac{1}{2}(1+x)\log[\frac{1}{2}(1+x)]$$

- $\frac{1}{2}(1-x)\log[\frac{1}{2}(1-x)]$ for $0 \le x \le 1$

This is proved in Section 3, after introducing notation in Section 2. The solution of the variational problem, following Duffield and Pulè,⁽⁶⁾ is presented and briefly discussed in Section 4.

2. NOTATION AND DEFINITIONS

It will be convenient to use Fock-space notation. For each n = 1, 2, 3, ..., let \mathcal{A}_n be a bounded region in \mathbb{R}^d of volume (i.e., Lebesgue measure) V_n . Let \mathfrak{h}_n be a positive, *injective*, self-adjoint operator on $L^2(\mathcal{A}_n)$ such that $\exp(-\beta \mathfrak{h}_n)$ is trace-class for $\beta > 0$. It follows that \mathfrak{h}_n has a bounded inverse. Write \mathfrak{R}_n for the *n*-fold tensor product of \mathbb{C}^2 and let $S_{(j)}$ be a copy of the spin operator of magnitude 1/2 acting on the *j*th component of \mathfrak{R}_n (j=1, 2, ..., n). Let \mathfrak{F}_n be the symmetric Fock space over $L^2(\mathcal{A}_n)$ and consider the Hamiltonian²

$$H_n = d\Gamma(\mathfrak{h}_n) + \sum_{j=1}^n \left\{ (V_n)^{-1/2} \left\{ a^*(\lambda_n(j)) + a(\lambda_n(j)) \right\} S_{(j)}^x + \varepsilon_n(j) S_{(j)}^z \right\}$$
(2.1)

acting on $\mathfrak{F}_n \otimes \mathfrak{R}_n$, where $\{\varepsilon_n(j)\} \subset \mathbb{R}$, $\{\lambda_n(j)\} \subset L^2(\mathscr{A}_n)$, $a(\cdot)$ is the familiar annihilation operator, and $d\Gamma$ denotes the second-quantization map. The quadratures formula⁽⁵⁾

$$W[f]^* d\Gamma(\mathfrak{h}) W[f] = d\Gamma(\mathfrak{h}) + a^*(\mathfrak{h}f) + a(\mathfrak{h}f) + \langle f, \mathfrak{h}f \rangle \cdot 1 \quad (2.2)$$

valid for $f \in \text{Dom}(\mathfrak{h})$, where $W[f] \equiv \exp\{\overline{a^*(f) - a(f)}\}$ is the unitary Weyl operator, enables one to write

$$H_n = \sum_{j=1}^n \left\{ n^{-1} U_n(j)^* d\Gamma(\mathfrak{h}_n) U_n(j) + \varepsilon_n(j) S_{(j)}^z - \frac{1}{4} \rho \|\mathfrak{h}_n^{-1/2} \lambda_n(j)\|^2 1 \right\}$$
(2.3)

where the unitaries $U_n(j)$, j = 1, 2, ..., n, are given by

$$U_{n}(j) := W[\frac{1}{2}n(V_{n})^{-1/2}\mathfrak{h}_{n}^{-1}\lambda_{n}(j)]P_{(j)}^{+} + W[\frac{1}{2}n(V_{n})^{-1/2}\mathfrak{h}_{n}^{-1}\lambda_{n}(j)]*P_{(j)}^{-}$$
(2.4)

where $P_{(j)}^{\pm}$ is the spectral projection of $S_{(j)}^{x}$ to the eigenvalue $\pm \frac{1}{2}$. Formula (2.3) can now be used to prove the self-adjointness of H_n .

Two free energy densities are associated with H_n :

$$\exp(-\beta V_n f_n) = \operatorname{tr}_{\mathfrak{F}_n \otimes \mathfrak{R}_n} [\exp(-\beta H_n)]$$
(2.5)

$$\exp(-\beta V_n f_n^0) = \operatorname{tr}_{\mathfrak{F}_n} [\exp[-\beta \, d\Gamma(\mathfrak{h}_n)]]$$
(2.6)

Of interest is the limit $n \to \infty$, such that V_n diverges but $\rho = n/V_n$ remains constant.

The Hamiltonian (2.1) has the following symmetry. Let the self-adjoint, unitary operator L_n on $\mathfrak{F}_n \otimes \mathfrak{R}_n$ be given by $L_n = \Gamma(-1)(\prod_{j=1}^n 2S_{(j)}^z)$; then

² Tensor notation for operators is not used, i.e., $S_{(j)} = 1 \otimes S_{(j)}$, $a(\cdot) = a(\cdot) \otimes 1$, etc.

 $L_n S_{(j)}^z L_n = S_{(j)}^z$ and $L_n S_{(j)}^x L_n = -S_{(j)}^x$ for every j = 1, 2, ..., n, and $L_n d\Gamma(\cdot) L_n = d\Gamma(\cdot)$, $L_n a(\cdot) L_n = -a(\cdot)$. In particular, L_n commutes with H_n .

Consider the Hamiltonian $H_n(h)$, $h \in \mathbb{R}^n$, defined by

$$H_n(h) = H_n + \sum_{j=1}^n h_j S_{(j)}^x$$
(2.7)

where the symmetry of H_n implemented by L_n is broken if the external field vector h is nonzero. The free energy density associated with $H_n(h)$ is written $f_n(h)$ and is a concave function of each of the n components of h. Expectation values with respect to the canonical state associated with $H_n(h)$ are denoted by $\langle \cdot \rangle_h$.

The $n \times n$ matrix Λ_n is defined by its matrix elements

$$\Lambda_n(j,k) \equiv \operatorname{Re}\langle\lambda_n(j),\mathfrak{h}_n^{-1}\lambda_n(k)\rangle_{L^2(\mathscr{A}_n)}, \quad j,k \in \{1,2,...,n\}$$
(2.8)

It is readily seen that Λ_n is positive semidefinite and the multiplicity of the eigenvalue 0 is equal to *n* minus the number of vectors in $\{\lambda_n(j): j=1, 2, ..., n\}$ which are real-linearly independent.

3. THE PROOFS

Introduce a bosonic Hamiltonian $H_n^b(x)$, $x \in \mathbb{R}^n$, on \mathfrak{F}_n by

$$H_{n}^{b}(x) = d\Gamma(\mathfrak{h}_{n}) + V_{n} \sum_{j=1}^{n} x_{j} \left\{ V_{n}^{-1/2} \left[a^{*}(\lambda_{n}(j)) + a(\lambda_{n}(j)) \right] + \sum_{k=1}^{n} \Lambda_{n}(j,k) x_{k} \right\}$$
(3.1)

and two spin Hamiltonians $\tilde{H}_{n}^{s}(h)$ and $\hat{H}_{n}^{s}(h; x)$, $h, x \in \mathbb{R}^{n}$, on \Re_{n} by

$$\widetilde{H}_{n}^{s}(h) = \sum_{j=1}^{n} \left[\varepsilon_{n}(j) S_{(j)}^{z} + h_{j} S_{(j)}^{x} - V_{n}^{-1} \sum_{k=1}^{n} \Lambda_{n}(j,k) S_{(j)}^{x} S_{(k)}^{x} \right]$$
(3.2)

$$\hat{H}_{n}^{s}(h;x) = \sum_{j=1}^{n} \left\{ \varepsilon_{n}(j) S_{(j)}^{z} + \left[h_{j} - 2 \sum_{k=1}^{n} \Lambda_{n}(j,k) x_{k} \right] S_{(j)}^{x} \right\} + V_{n} x \Lambda_{n} x 1$$
(3.3)

Write $\tilde{f}_n^s(h)$ and $\hat{f}_n^s(h; x)$ for the free energy densities associated with (3.2) and (3.3), respectively. Expectation values with respect to a canonical state will be written as angular brackets indexed by the corresponding Hamiltonian or distinctive parameters characterizing it.

Lemma 1:

$$(-\beta V_n)^{-1} \log \operatorname{tr}_{\mathfrak{F}_n} \exp\left[-\beta H_n^{\mathfrak{b}}(x)\right] = f_n^0 \quad \text{for every} \quad x \in \mathbb{R}^n$$
$$\hat{f}_n^{\mathfrak{s}}(h; x) = x \Lambda_n x - (V_n \beta)^{-1}$$
$$\times \sum_{j=1}^n \log\left[2 \cosh\left(\frac{1}{2}\beta \left\{\varepsilon_n(j)^2 + \left[h_j - 2\sum_{k=1}^n \Lambda_n(j, k) x_k\right]^2\right\}^{1/2}\right)\right]$$

Proof. An application of (2.2) shows that (3.1) is unitarily equivalent to $d\Gamma(\mathfrak{h}_n)$ for every $x \in \mathbb{R}^n$ (see the proof of Lemma 2A). Up to the constant term $V_n x \mathcal{A}_n x 1$, the Hamiltonian (3.3) is the sum of *n* pairwise commuting operators

$$\varepsilon_n(j) S^z + \left(h_j - 2\sum_{k=1}^n A_n(j,k) x_k\right) S^x$$

on \mathbb{C}^2 , each of which has

$$\pm \frac{1}{2} \left[\varepsilon_n(j)^2 + \left(h_j - 2 \sum_{k=1}^n \Lambda_n(j,k) x_k \right)^2 \right]^{1/2}$$

as its eigenvalues.

Lemma 2A:

$$\tilde{f}_n^{\rm s}(h) - \inf_{x \in \mathbb{R}^n} \hat{f}_n^{\rm s}(h; x) \leq f_n^{\rm o} + \tilde{f}_n^{\rm s}(h) - f_n(h)$$

Proof. Equivalently,

$$f_n^0 + \inf_{x \in \mathbb{R}^n} \hat{f}_n^s(h; x) - f_n(h) \ge 0 \tag{(*)}$$

By the first part of Lemma 1, $f_n^0 + \hat{f}_n^s(h; x)$ is the specific free energy associated with the Hamiltonian $\hat{H}_n(h; x) = H_n^b(x) + \hat{H}_n^s(h; x)$; by Bogoljubov's inequality (see ref. 7 for a proof),

$$f_n^0 + \hat{f}_n^s(h; x) - f_n(h) \ge V_n^{-1} \langle \hat{H}_n(h; x) - H_n(h) \rangle_{\hat{H}_n(h; x)}$$
(**)

Now by (3.1), (3.2), and (2.7), the right-hand side of (**) is given by

$$\sum_{j=1}^{n} \left\{ \left[V_{n}^{-1/2} \langle a^{*}(\lambda_{n}(j)) + a(\lambda_{n}(j)) \rangle_{H_{n}^{b}(x)} + 2 \sum_{k=1}^{n} \Lambda_{n}(j,k) x_{k} \right] \times \left[x_{j} - V_{n}^{-1} \langle S_{(j)}^{x} \rangle_{\dot{H}_{n}^{b}(h;x)} \right] \right\}$$

By (2.2),

$$H_n^{\mathbf{b}}(x) = W\left[-V_n^{1/2}\sum_{j=1}^n x_j \mathfrak{h}_n^{-1} \lambda_n(j)\right] d\Gamma(\mathfrak{h}_n) W\left[V_n^{1/2}\sum_{j=1}^n x_j \mathfrak{h}_n^{-1} \lambda_n(j)\right]$$

Using the formula $W[f]^* a(g) W[f] = a(g) + \langle g, f \rangle 1$ and (2.8), one finds

$$\langle a^*(\lambda_n(k)) + a(\lambda_n(k)) \rangle_{H_n^b(x)}$$

$$= \left\langle W \left[V_n^{1/2} \sum_{j=1}^n x_j \mathfrak{h}_n^{-1} \lambda_n(j) \right] \right. \\ \times \left[a^*(\lambda_n(k)) + a(\lambda_n(k)) \right] W \left[-V_n^{1/2} \sum_{j=1}^n x_j \mathfrak{h}_n^{-1} \lambda_n(j) \right] \right\rangle_{d\Gamma(\mathfrak{h}_n)}$$

$$= -V_n^{1/2} \sum_{j=1}^n x_j \langle \langle \overline{\lambda_n(k)}, \mathfrak{h}_n^{-1} \overline{\lambda_n(j)} \rangle + \langle \lambda_n(k), \mathfrak{h}_n^{-1} \lambda_n(j) \rangle)$$

$$+ \langle a^*(\lambda_n(k)) + a(\lambda_n(k)) \rangle_{d\Gamma(\mathfrak{h}_n)}$$

$$= -2V_n^{1/2} \sum_{j=1}^n \Lambda_n(j, k) x_j$$

Thus, the right-hand side of (**) is zero for every $x \in \mathbb{R}^n$; (*) follows by taking the infimum with respect to x.

Bogoljubov's inequality also gives an upper bound on $f_n^0 + \tilde{f}_n^s(h) - f_n(h)$; this involves

$$V_n^{-3/2} \sum_{\nu \ge 1} \sum_{j=1}^n \langle [\lambda_n(j;\nu) a_\nu^* + \overline{\lambda_n(j;\nu)} a_\nu] S_{(j)}^x \rangle_h$$
(3.4)

Bogoljubov and Plechko⁽³⁾ have devised an alternative method which avoids the problem of estimating (3.4). Fix an arbitrary n, and consider an arbitrary finite number N of boson modes with strictly positive frequencies $\{\omega_n(v): 1 \le v \le N\}$ and associated coupling constants $\{\lambda_n(j; v): 1 \le v \le N, j=1, 2, ..., n\}$. The Hamiltonian $H_n(h; N)$ is that obtained from $H_n(h)$ by considering only these N modes, and the associated specific free energy will be written $f_n(h; N)$; accordingly, write $f_n^0(N)$, and $\tilde{f}_n^s(h; N)$.

Let $\mathbb{A} = \{v: 1 \le v \le N, \lambda_n(j; v) = 0 \text{ for every } j = 1, 2, ..., n\}$, and $\mathbb{B} = \{1, 2, ..., N\} \setminus \mathbb{A}$. For any set $\tau = \{\tau_v: v \in \mathbb{B}\}$ of real numbers in the open interval (0, 1), one has the identity

$$H_{n}(h; N) = \sum_{\nu \in \mathbb{A}} \omega_{n}(\nu) a_{\nu}^{*} a_{\nu} + \sum_{\nu \in \mathbb{B}} (1 - \tau_{\nu}) \omega_{n}(\nu) a_{\nu}^{*} a_{\nu} + \tilde{H}_{n}^{s}(h; N; \tau)$$
$$+ \sum_{\nu \in \mathbb{B}} \tau_{\nu} \omega_{n}(\nu) b_{\nu}(\tau)^{*} b_{\nu}(\tau)$$
(3.5)

Raggio

where

$$\widetilde{H}_{n}^{s}(h;N;\tau) = \sum_{j=1}^{n} \left[\varepsilon_{n}(j) S_{(j)}^{z} + h_{j} S_{(j)}^{x} - V_{n}^{-1} \sum_{k=1}^{n} \Lambda_{n}^{N}(j,k;\tau) S_{(j)}^{x} S_{(k)}^{x} \right]$$
(3.6)

$$A_n^N(j,k;\tau) = \operatorname{Re}\sum_{\nu \in \mathfrak{B}} \left[\tau_{\nu}\omega_n(\nu)\right]^{-1} \overline{\lambda_n(j;\nu)} \lambda_n(k;\nu)$$
(3.7)

$$\mathfrak{b}_{\nu}(\tau) = a_{\nu} + V_n^{-1/2} [\tau_{\nu} \omega_n(\nu)]^{-1} \sum_{j=1}^n \lambda_n(j;\nu) S_{(j)}^{\chi}$$
(3.8)

Let $f_n^0(N; \tau)$ be the specific free energy of

$$\sum_{v \in \mathbb{A}} \omega_n(v) a_v^* a_v + \sum_{v \in \mathbb{B}} (1 - \tau_v) \omega_n(v) a_v^* a_v$$

and write $\tilde{f}_n^s(h; N; \tau)$ for that of (3.6). Since the last term in (3.5) is positive, $f_n^0(N; \tau) + \tilde{f}_n^s(h; N; \tau) \leq f_n(h; N)$ by Bogoljubov's inequality. Thus,

$$f_{n}^{0}(N) + \tilde{f}_{n}^{s}(h; N) - f_{n}(h; N) \\ \leq \left[f_{n}^{0}(N) - f_{n}^{0}(N; \tau) \right] + \left[\tilde{f}_{n}^{s}(h; N) - \tilde{f}_{n}^{s}(h; N; \tau) \right]$$
(3.9)

Using Bogoljubov's inequality and the familiar formula for $f_n^0(N;\tau)$, one has $f_n^0(N) = f_n^0(N;\tau)$

$$\begin{aligned} f_{n}^{\circ}(N) &= f_{n}^{\circ}(N; \tau) \\ &\leqslant V_{n}^{-1} \sum_{\nu \in \mathbb{B}} \tau_{\nu} \omega_{n}(\nu) \langle a_{\nu}^{*} a_{\nu} \rangle_{(N;\tau)} \\ &= -\sum_{\nu \in \mathbb{B}} \tau_{\nu} (\partial f_{n}^{0} / \partial \tau_{\nu}) (N; \tau) \\ &= V_{n}^{-1} \sum_{\nu \in \mathbb{B}} \tau_{\nu} \omega_{n}(\nu) (e^{\beta(1 - \tau_{\nu}) \omega_{n}(\nu)} - 1)^{-1} \\ &\leqslant (\beta V_{n})^{-1} \sum_{\nu \in \mathbb{B}} \tau_{\nu} (1 - \tau_{\nu})^{-1} \end{aligned}$$
(3.10)

Also using Bogoljubov's inequality and $-\frac{1}{2}1 \le S^x \le \frac{1}{2}1$, one finds

$$\int_{n}^{s}(h; N) - f_{n}^{s}(h; N; \tau)$$

$$\leq V_{n}^{-2} \sum_{\nu \in \mathbb{B}} \left[(\tau_{\nu}^{-1} - 1) \omega_{n}(\nu)^{-1} \times \operatorname{Re} \sum_{j,k=1}^{n} \overline{\lambda_{n}(j; \nu)} \lambda_{n}(k; \nu) \langle S_{(j)}^{x} S_{(k)}^{x} \rangle_{(h;N;\tau)} \right]$$

$$\leq (2V_{n})^{-2} \sum_{\nu \in \mathbb{B}} (1 - \tau_{\nu}) \tau_{\nu}^{-1} \omega_{n}(\nu)^{-1} \left[\sum_{j=1}^{n} |\lambda_{n}(j; \nu)| \right]^{2} \quad (3.11)$$

Inserting (3.10) and (3.11) into (3.9), one obtains

$$\begin{bmatrix} f_n^0(N) + \tilde{f}_n^s(h; N) \end{bmatrix} - f_n(h; N) \\ \leqslant (\beta V_n)^{-1} \sum_{\nu \in \mathbf{B}} \tau_\nu (1 - \tau_\nu)^{-1} \\ + (2V_n)^{-2} \sum_{\nu \in \mathbf{B}} (1 - \tau_\nu) \tau_\nu^{-1} \omega_n(\nu)^{-1} \left[\sum_{j=1}^n |\lambda_n(j; \nu)| \right]^2$$
(3.12)

The infimum of the right-hand side of (3.12) with respect to τ is assumed at

$$\tau_{\nu} = \frac{\beta^{1/2} \omega_n(\nu)^{-1/2} \sum_{j=1}^{n} |\lambda_n(j;\nu)|}{2V_n^{1/2} + \beta^{1/2} \omega_n(\nu)^{-1/2} \sum_{j=1}^{n} |\lambda_n(j;\nu)|}$$
(3.13)

which lies in (0, 1) by virtue of the definition of \mathbb{B} . Thus,

$$f_{n}^{0}(N) + \tilde{f}_{n}^{s}(h; N) - f_{n}(h; N) \\ \leqslant V_{n}^{-1} (\beta V_{n})^{-1/2} \sum_{\nu \ge 1}^{N} \omega_{n}(\nu)^{-1/2} \sum_{j=1}^{n} |\lambda_{n}(j; \nu)|$$
(3.14)

For fixed *n*, it follows that $f_n^0(N)$, $\tilde{f}_n^s(h; N)$, and $f_n(h; N)$ converge to f_n^0 , $\tilde{f}_n^s(h)$, and $f_n(h)$ respectively, as $N \to \infty$, so that the following result is proved.

Lemma 2B:

$$f_n^0 + \tilde{f}_n^s(h) - f_n(h) \le V_n^{-1} (\beta V_n)^{-1/2} \sum_{\nu \ge 1} \omega_n(\nu)^{-1/2} \sum_{j=1}^n |\lambda_n(j;\nu)|$$

The limit of $\tilde{f}_n^s(h)$ has been recently obtained by Duffield and Pulè⁽⁶⁾ in their analysis of the BCS model. Their result, which combines large-deviation methods with Berezin-Lieb bounds, is the following.

Theorem 2 (Duffield and Pulè). If conditions (C1) and (C2) are satisfied and there exists a real-valued continuous function h on [0, 1] such that

(C0)
$$\lim_{n \to \infty} \sup_{j \in \{1, 2, \dots, n\}} |h_j - h(j/n)| = 0$$

then

$$\begin{split} \tilde{f}^{s}(h) &= \lim_{\substack{n \to \infty \\ \rho = \text{ const}}} \tilde{f}^{s}_{n}(h) \\ &= \rho \inf_{\substack{r,s \in L^{\infty}_{\mathbb{R}}([0,1]) \\ |s| \leqslant r \leqslant 1}} \left(\int_{0}^{1} \left\{ -\beta^{-1}I(r(t)) + \frac{1}{2}h(t) \, s(t) \right\} \\ &- \frac{1}{2} \, |\varepsilon(t)| \, \left[r(t)^{2} - s(t)^{2} \right]^{1/2} \right\} \, dt \\ &- \frac{1}{4}\rho \int_{0}^{1} \int_{0}^{1} \Lambda(t, t') \, s(t) \, s(t') \, dt \, dt' \Big) \end{split}$$

Remark 1. The proofs of ref. 6 apply without change under the slightly stronger assumptions $h_j = h(j/n)$, $\varepsilon_n(j) = \varepsilon(j/n)$, and $\Lambda_n(j, k) = \Lambda(j/n, k/n)$, but can be adapted to accommodate (C0)–(C2).

The $\inf_{x \in \mathbb{R}^n} \hat{f}_n^s(h; x)$ is discussed in Appendix A; one has the following result:

Lemma 3. Under the assumptions (C0)-(C2),

$$\lim_{\substack{n \to \infty \\ \rho = \text{const}}} \inf_{x \in \mathbb{R}^n} \hat{f}_n^{s}(h; x) = \tilde{f}^{s}(h)$$

Proof. Let $M_n = \inf_{x \in \mathbb{R}^n} \hat{f}_n^s(h; x)$; by Lemma A1, setting $s_j = r_j \sin(\vartheta_j)$,

$$M_{n} = \inf_{|s_{j}| \leq r_{j} \leq 1} \left(V_{n}^{-1} \sum_{j=1}^{n} \left[-\beta^{-1} I(r_{j}) - \frac{1}{2} \left| \varepsilon_{n}(j) \right| (r_{j}^{2} - s_{j}^{2})^{1/2} + \frac{1}{2} h_{j} s_{j} \right] - \frac{1}{4} V_{n}^{-2} \sum_{j=1}^{n} \sum_{k=1}^{n} A_{n}(j,k) s_{j} s_{k} \right)$$

Define L_n by replacing $\varepsilon_n(j)$, h_j , and $\Lambda_n(j, k)$ in the above expression for M_n by $\varepsilon(j/n)$, h(j/n), and $\Lambda(j/n, k/n)$, respectively, where $\varepsilon(\cdot)$, $h(\cdot)$, and $\Lambda(\cdot, \cdot)$ are the functions given by conditions (C0)–(C2). As in Theorem 3 of ref. 6, one proves that $L_n \to \tilde{f}^s(h)$ as $n \to \infty$ with $\rho = \text{const. Now}$,

$$\begin{split} |M_n - L_n| &\leq \sup_{|s_j| \leq r_j \leq 1} \left| V_n^{-1} \sum_{j=1}^n \left\{ \frac{1}{2} [|\varepsilon(j/n)| - |\varepsilon_n(j)|] (r_j^2 - s_j^2)^{1/2} \right. \\ &+ \frac{1}{2} [h_j - h(j/n)] s_j \} \\ &+ \frac{1}{4} V_n^{-2} \sum_{j=1}^n \sum_{k=1}^n \left\{ \left[\Lambda(j/n, k/n) - \Lambda_n(j, k) \right] s_j s_k \right\} \right| \\ &\leq \frac{1}{2} \rho n^{-1} \sum_{j=1}^n \left\{ ||\varepsilon(j/n)| - |\varepsilon_n(j)|| + |h_j - h(j/n)| \right\} \\ &+ \frac{1}{4} \rho^2 n^{-2} \sum_{j=1}^n \sum_{k=1}^n |\Lambda(j/n, k/n) - \Lambda_n(j, k)| \end{split}$$

so that, by (C0)–(C2), $M_n - L_n \to 0$ as $n \to \infty$ with $\rho = \text{const.}$

Remark 2. One can prove

$$\lim_{n \to \infty} \left[\tilde{f}_n^{s}(h) - \inf \hat{f}_n^{s}(h; x) \right] = 0$$

directly by the "approximating Hamiltonian method," using an idea of ref. 1; one has to assume that n^{-1} (number of nonzero eigenvalues of $A_n \to 0$ as $n \to \infty$; moreover, the positivity of A_n is used.⁽¹¹⁾

The proof of Theorem 1 is obtained by combining Lemmas 2A, 2B, and 3 and Theorem 2.

One can recover the results of ref. 10, which are valid for the homogeneous case: $\varepsilon_n(j) = \varepsilon_n$, $\lambda_n(j; v) = \lambda_n(v)$, and $h_j = h$, for all j = 1, 2, ..., n.³ Condition (CO) is trivially met; conditions (C1) and (C2) demand the existence of real numbers ε and Λ (≥ 0) such that $\varepsilon_n \to \varepsilon$ and $\langle \lambda_n, \mathfrak{h}_n^{-1} \lambda_n \rangle_{L^2(\mathscr{A}_n)} \to \Lambda$.

Lemma 4. In the homogeneous case

$$\tilde{f}^{s}(h) = -\rho \sup_{0 \le z, u \le 1} \left[\beta^{-1}I(u) + \frac{1}{2} |h| u(1-z^{2})^{1/2} + \frac{1}{2} |\varepsilon| uz + \frac{1}{4}\rho \Lambda u^{2}(1-z^{2})\right]$$

Proof. By Theorem 2, choosing
$$r(t) = r$$
 and $s(t) = s$ a.e., one has

$$-\tilde{f}^{s}(h)/\rho \ge \sup_{|s| \le r \le 1} \left[\beta^{-1}I(r) - \frac{1}{2}hs + \frac{1}{2}|\varepsilon| (r^{2} - s^{2})^{1/2} + \frac{1}{4}\rho As^{2}\right]$$
$$= \sup_{0 \le x, r \le 1} \left[\beta^{-1}I(r) + \frac{1}{2}|h| rx + \frac{1}{2}|\varepsilon| r(1 - x^{2})^{1/2} + \frac{1}{4}\rho Ar^{2}x^{2}\right]$$

For r and s in $L^{\infty}_{\mathbb{R}}([0, 1])$ with $|s| \leq r \leq 1$ (all integrals are over [0, 1]),

$$\int [r(t)^{2} - s(t)^{2}]^{1/2} dt$$

= $\int [r(t) - s(t)]^{1/2} [r(t) + s(t)]^{1/2} dt$
 $\leq \left\{ \int [r(t) - s(t)] dt \cdot \int [r(t) + s(t)] dt \right\}^{1/2}$
= $\left\{ \left[\int r(t) dt \right]^{2} - \left[\int s(t) dt \right]^{2} \right\}^{1/2}$

by the Schwarz inequality; since I is concave,

$$\begin{aligned} -\tilde{f}^{s}(h)/\rho &\leq \sup_{\substack{r,s \in L_{\beta}^{\infty}([0,1]) \\ |s| \leqslant r \leqslant 1}} \left(\beta^{-1}I\left(\int r(t) dt \right) \\ &- \frac{1}{2}h \int s(t) dt + \frac{1}{4}\rho A \left[\int s(t) dt \right]^{2} \\ &+ \frac{1}{2} |\varepsilon| \left\{ \left[\int r(t) dt \right]^{2} - \left[\int s(t) dt \right]^{2} \right\}^{1/2} \right) \\ &= \sup_{|s| \leqslant r \leqslant 1} \left[\beta^{-1}I(r) - \frac{1}{2}hs + \frac{1}{2} |\varepsilon| (r^{2} - s^{2})^{1/2} + \frac{1}{4}\rho As^{2} \right] \quad \blacksquare \end{aligned}$$

³ Condition (C4) is not needed for the results of ref. 10.

4. THE PHASE TRANSITION

The variational problem determining $\tilde{f}^{s}(h)$, and thus f(h), is

$$\mathcal{I}(h) = \sup_{\substack{r,s \in L_{\mathsf{R}}^{\infty}[[0,1]) \\ |s| \leq r \leq 1}} \left(\int_{0}^{1} \left\{ \beta^{-1} I(r(t)) + \frac{1}{2} |\varepsilon(t)| \left[r(t)^{2} - s(t)^{2} \right]^{1/2} - \frac{1}{2} h(t) s(t) \right\} dt + \frac{1}{4} \rho \int_{0}^{1} \int_{0}^{1} \Lambda(t, t') s(t) s(t') dt dt' \right)$$
(4.1)

For $\Lambda(t, t') \ge 0$ (and h = const) this problem⁴ is solved by Duffield and Pulè⁽⁶⁾; most of their arguments apply to the case of arbitrary Λ .

Notice that if h=0 and (r, s) is a maximizer for (4.1), then so is (r, -s). The function I is concave, with derivative $-\arctan$. The r variation can be done as in ref. 6; for $s \in L^{\infty}_{\mathbb{R}}([0, 1])$ with $|s| \leq 1$, let $r_s: [0, 1] \to \mathbb{R}$ be defined (a.e.) to be 1 where |s| = 1, and otherwise as the largest zero in the interval [|s(t)|, 1] of the function⁵

$$x \to \frac{1}{2}\beta |\varepsilon(t)| x - [x^2 - s(t)^2]^{1/2} \operatorname{arctanh}(x)$$
(4.2)

Then, if \mathscr{B} denotes the unit ball of $L^{\infty}_{\mathbb{R}}([0, 1])$, one has

$$\mathscr{I}(h) = \sup_{s \in \mathscr{B}} \left\{ \mathscr{V}(s;h) \right\}$$
(4.3)

where

$$\mathcal{V}(s;h) = \int_0^1 \left\{ \beta^{-1} I(r_s(t)) + \frac{1}{2} |\varepsilon(t)| \left[r_s(t)^2 - s(t)^2 \right]^{1/2} - \frac{1}{2} h(t) s(t) \right\} dt + \frac{1}{4} \rho \int_0^1 \int_0^1 \Lambda(t, t') s(t) s(t') dt dt'$$
(4.4)

For h=0, one has inversion symmetry, $\mathscr{V}(s; 0) = \mathscr{V}(-s; 0)$. Let K be the self-adjoint, integral operator on $L^2_{\mathbb{R}}([0, 1])$ defined by the kernel Λ ; K is compact. Consider the continuous function g_β on [0, 1] given by

$$g_{\beta}(t) = \begin{cases} (\beta/2)^{1/2}, & \text{if } \varepsilon(t) = 0\\ (\{\tanh\lfloor \frac{1}{2}\beta | \varepsilon(t) | \rfloor\}/|\varepsilon(t)|)^{1/2} & \text{if } \varepsilon(t) \neq 0 \end{cases}$$
(4.5)

⁴ The kernel need not be positive; it defines a positive operator. $\Lambda(t, t') > 0$ is used in the uniqueness results of ref. 6.

⁵ Notice that $r_0(t) = \tanh\left[\frac{1}{2}\beta |\varepsilon(t)|\right]$ a.e., that $r_{-s} = r_s$, and that $r_s = |s|$ on the set where $\varepsilon(t) = 0$.

and let G_{β} be the (bounded, positive) operator on $L^2_{\mathbb{R}}([0, 1])$ of multiplication by g_{β} . Let $U^{\rho}_{\beta} = \rho G_{\beta} K G_{\beta}$, i.e.,

$$\left\{U^{o}_{\beta}\psi\right\}(t) = \rho g_{\beta}(t) \int_{0}^{1} g_{\beta}(t') \Lambda(t, t') \psi(t') dt'$$
(4.6)

Define $\Phi^{\rho}_{\beta}(s; t)$ (a.e.) by

$$\Phi_{\beta}^{\rho}(s;t) = \rho\{Ks\}(t) - \begin{cases} 2\beta^{-1} \operatorname{arctanh} s(t) & \varepsilon(t) = 0\\ |\varepsilon(t)| \ s(t)/[r_s(t)^2 - s(t)^2]^{1/2} & \varepsilon(t) \neq 0 \end{cases}$$
(4.7)

and notice that $\Phi^{\rho}_{\beta}(-s; \cdot) = -\Phi^{\rho}_{\beta}(s; \cdot)$.

The solution of (4.1) for h=0 is obtained from the following two results, which will be proved in Appendix B by adjusting the arguments of ref. 6:

Theorem 3. If $||U_{\beta}^{\rho}|| \leq 1$, then

$$\mathscr{I}(0) = \mathscr{V}(0;0) = \beta^{-1} \int_0^1 \log\{2 \cosh[\frac{1}{2}\beta\varepsilon(t)]\} dt$$

Theorem 4. If $||U_{\beta}^{\rho}|| > 1$, then there exists a nonzero $s_* \in \mathscr{B}$ such that $\mathscr{I}(0) = \mathscr{V}(s_*; 0) = \mathscr{V}(-s_*; 0)$, where s_* and $-s_*$ are solutions of the Euler-Lagrange equation $\Phi_{\beta}^{\rho}(s; \cdot) = 0$. Moreover,

$$\begin{aligned} \mathscr{I}(0) &= \mathscr{V}(\pm s_{*}; 0) \\ &= \beta^{-1} \int_{0}^{1} \log(2 \cosh\{\frac{1}{2}\beta[\varepsilon(t)^{2} + k_{\beta}(t)^{2}]^{1/2}\}) dt \\ &- \frac{1}{4} \int_{0}^{1} \frac{\tanh\{\frac{1}{2}\beta[\varepsilon(t)^{2} + k_{\beta}(t)^{2}]^{1/2}\}}{[\varepsilon(t)^{2} + k_{\beta}(t)^{2}]^{1/2}} k_{\beta}(t)^{2} dt \end{aligned}$$

where $k_{\beta} \neq 0$ satisfies

$$k_{\beta}(t) = \rho \int_{0}^{1} \Lambda(t, t') \frac{\tanh\{\frac{1}{2}\beta[\varepsilon(t')^{2} + k_{\beta}(t')^{2}]^{1/2}\}}{[\varepsilon(t')^{2} + k_{\beta}(t')^{2}]^{1/2}} k_{\beta}(t') dt'$$

Remark 3. Most likely, s_* and $-s_*$ are the only nonzero solutions of the Euler-Lagrange equation if K is positive, but I am unable to prove this.

The map $\beta \to ||U_{\beta}^{\rho}||$ is strictly increasing with $\lim_{\beta \downarrow 0} ||U_{\beta}^{\rho}|| = 0$, so that one can identify a possibly infinite critical reciprocal temperature β_c such that if $\beta < \beta_c$, then $||U_{\beta}^{\rho}|| < 1$, and if $\beta > \beta_c$, then $||U_{\beta}^{\rho}|| > 1$. For $\beta \leq \beta_c$, \tilde{f}^{s} (and thus f) is independent of the interaction: the system is thermodynamically equivalent to a noninteracting system of bosons and spins. Qualitatively, the results are identical to those of refs. 9 and 10. As an illustration, in the homogeneous case, one has

$$\|U_{\beta}^{\rho}\| = \rho \Lambda \begin{cases} \frac{1}{2}\beta & \text{if } \varepsilon = 0\\ \tanh(\frac{1}{2}\beta |\varepsilon|)/|\varepsilon| & \text{if } \varepsilon \neq 0 \end{cases}$$

and thus, as in ref. 10,

$$\beta_{c} = \begin{cases} 2 \operatorname{arctanh}(|\varepsilon|/\rho \Lambda)/|\varepsilon| & \text{if } \varepsilon \neq 0 \text{ and } |\varepsilon| < \rho \Lambda \\ +\infty & \text{if } \varepsilon \neq 0 \text{ and } |\varepsilon| \ge \rho \Lambda \\ 2/\rho \Lambda & \text{if } \varepsilon = 0 \end{cases}$$

Finally, one can proceed, as in ref. 6, to obtain the thermodynamic limit of the equilibrium expectation of the average spin polarization in x direction when h(t) = k (by symmetry, this limit is zero for k = 0), and then consider the limit $k \to 0$. The result is qualitatively the same as that for the homogeneous case,⁽¹⁰⁾ namely: the limit is zero for $\beta \leq \beta_c$ and not zero if $\beta > \beta_c$, with different sign depending on whether $k \uparrow 0$ or $k \downarrow 0$.

APPENDIX A. DISCUSSION OF $\inf_{x \in \mathbb{R}^n} \hat{f}_n^s(h; x)$

Lemma A1. Let I on [0, 1] be defined as in Theorem 1. Then,

$$\begin{split} \inf_{x \in \mathbb{R}^{n}} \hat{f}_{n}^{s}(h; x) \\ &= \inf_{\substack{r_{j} \in [0,1] \\ \vartheta_{j} \in [0,2\pi]}} \left\{ V_{n}^{-1} \sum_{j=1}^{n} \left[-\beta^{-1}I(r_{j}) + \frac{1}{2}\varepsilon_{n}(j) r_{j} \cos(\vartheta_{j}) \right. \\ &+ \frac{1}{2}h_{j}r_{j} \sin(\vartheta_{j}) - \frac{1}{4}V_{n}^{-1} \sum_{k=1}^{n} \Lambda_{n}(j,k) r_{j}r_{k} \sin(\vartheta_{j}) \sin(\vartheta_{k}) \right] \right\} \\ &= \inf_{\substack{r_{j} \in [0,1] \\ \vartheta_{j} \in [-1/2\pi,1/2\pi]}} \left\{ V_{n}^{-1} \sum_{j=1}^{n} \left[-\beta^{-1}I(r_{j}) - \frac{1}{2} |\varepsilon_{n}(j)| r_{j} \cos(\vartheta_{j}) \right. \\ &+ \frac{1}{2}h_{j}r_{j} \sin(\vartheta_{j}) - \frac{1}{4}V_{n}^{-1} \sum_{k=1}^{n} \Lambda_{n}(j,k) r_{k} \sin(\vartheta_{j}) \sin(\vartheta_{k}) \right] \right\} \end{split}$$

Proof. One verifies that for a and b real,

$$\inf_{\substack{r \in [0,1]\\ y^2 + z^2 = 1}} \left[-\beta^{-1} I(r) + \frac{1}{2} arz + \frac{1}{2} bry \right]$$
$$= -\beta^{-1} \log\{2 \cosh\left[\frac{1}{2}\beta(a^2 + b^2)^{1/2}\right]\}$$

Thus, by Lemma 1,

$$\hat{f}_{n}^{s}(h;x) = V_{n}^{-1} \inf_{\substack{r_{j} \in [0,1]\\z_{j}^{2}+y_{j}^{2}=1}} \sum_{j=1}^{n} \left\{ -\beta^{-1}I(r_{j}) + \frac{1}{2}\varepsilon_{n}(j) r_{j}z_{j} + \frac{1}{2}r_{j}y_{j} \left[h_{j} - 2\sum_{k=1}^{n} \Lambda_{n}(j,k) x_{k} \right] \right\} + x\Lambda_{n}x$$

The variation over $x \in \mathbb{R}^n$ can be done explicitly (for this, it is convenient to diagonalize Λ_n); it follows that

$$\inf_{x \in \mathbb{R}^{n}} \hat{f}_{n}^{s}(h; x)$$

$$= V_{n}^{-1} \inf_{\substack{r_{j} \in [0,1]\\z_{j}^{2} + y_{j}^{2} = 1}} \sum_{j=1}^{n} \left[-\beta^{-1}I(r_{j}) + \frac{1}{2}\varepsilon_{n}(j) r_{j}z_{j} + \frac{1}{2}h_{j}r_{j} y_{j} - \frac{1}{4}V_{n}^{-1} \sum_{k=1}^{n} r_{j}r_{k} y_{j} y_{k} A_{n}(j,k) \right]$$

which proves the first claim upon setting $z_j = \cos(\vartheta_j), \ \vartheta_j \in [0, 2\pi]$. The second claim is obvious.

APPENDIX B. SOLUTION OF THE VARIATIONAL PROBLEM FOLLOWING DUFFIELD AND PULÈ⁽⁶⁾

Write \mathscr{I} for $\mathscr{I}(0)$ and $\mathscr{V}(s)$ for $\mathscr{V}(s; 0)$.

Proof of Theorem 3. This is a minor adjustment of the corresponding result of ref. 6, to accommodate the fact that the present variation is over \mathscr{B} and not its positive part. Let A be the support of ε . For arbitrary $s \in \mathscr{B}$ and $0 , put <math>F(p) = \mathscr{V}(ps)$. Now, F is differentiable with derivative (integrals with unspecified domain are over [0, 1])

$$F'(p) = \frac{1}{2}p\rho \iint \Lambda(t, t') s(t) s(t') dt dt'$$

$$-\frac{1}{2}p \int_{\mathcal{A}} |\varepsilon(t)| s(t)^{2} [r_{ps}(t)^{2} - p^{2}s(t)^{2}]^{-1/2} dt$$

$$-\beta^{-1} \int_{\mathcal{A}^{c}} \operatorname{arctanh}[p | s(t) |] |s(t)| dt$$

Using the inequalities

$$|s(t)| \operatorname{arctanh}[p | s(t)|] \ge ps(t)^{2}$$
$$[r_{s}(t)^{2} - s(t)^{2}]^{1/2} \le \operatorname{tanh}[\frac{1}{2}\beta | \varepsilon(t)|]$$

one obtains

$$F'(p) \leq \frac{1}{2}p \langle \hat{s}, \{U_{\beta}^{\rho} - 1\} \hat{s} \rangle_{L^{2}_{p}([0,1])}$$

where $\hat{s}(t) = s(t)/g_{\beta}(t)$. The assumption $||U_{\beta}^{e}|| \leq 1$ implies $F'(p) \leq 0$, so that $\mathscr{V}(ps) \leq \mathscr{V}(0)$, and by continuity $\mathscr{V}(s) \leq \mathscr{V}(0)$. One can compute $\mathscr{V}(0)$ using $r_{0}(t) = \tanh[\frac{1}{2}\beta |\varepsilon(t)|]$.

The proof of Theorem 4 is broken up into a series of lemmas all of which have their origins in ref. 6.

Lemma B1. There exists $s \in \mathcal{B}$ such that $\mathcal{I}(h) = \mathcal{V}(s; h)$.

Proof. See Theorem 5 of ref. 6.

Lemma B2. If $||U_{\beta}^{\rho}|| > 1$, then $\mathscr{I} > \mathscr{V}(0)$.

Proof. Let $s \in \mathscr{B}$ with $\mathscr{V}(s) = \mathscr{I}$. Since U_{β}^{ρ} is compact, $||U_{\beta}^{\rho}||$ is an eigenvalue; let ξ be a corresponding eigenvector. Define $\xi_n \in L_{\mathbb{R}}^{\infty}([0, 1])$ by

$$\xi_n(t) = \begin{cases} \xi(t) & \text{if } |\xi(t)| \le n \\ 0 & \text{otherwise} \end{cases}$$

a.e. It follows that

$$\langle \xi_n, \{U^{\rho}_{\beta} - 1\} \xi_n \rangle_{L^2_{\mathbb{R}}([0,1])} \rightarrow \|U^{\rho}_{\beta}\| - 1(>0!) \quad \text{as} \quad n \to \infty$$

Choose m such that

$$\langle \xi_m, \{U^{\rho}_{\beta} - 1\} \xi_m \rangle_{L^2_{\mathfrak{p}}([0,1])} > 0$$

and let $\hat{s} = \xi_m g_{\beta}$. The proof then proceeds as in Lemma 3 of ref. 6.

Lemma B3. If $s \in \mathscr{B}$ and $\mathscr{I} = \mathscr{V}(s)$, then $\{t \in [0, 1]: |s(t)| = 1\}$ has zero measure.

Proof. Proceed as in the proof of Lemma 2 of ref. 6, with the set $\{t \in [0, 1]: |s(t)| = 1\}$.

Lemma B4. If $s \in \mathscr{B}$ and $\mathscr{I} = \mathscr{V}(s)$, then $\Phi_{\mathscr{B}}^{\rho}(s; \cdot) = 0$.

Proof. This is an adaptation of the proof of Theorem 6 of ref. 6. Let $0 < \delta < 1$, and take $\xi \in L^{\infty}_{\mathbb{R}}([0, 1])$ with essential support contained in

580

 $A_{\delta} \equiv \{t \in [0, 1]: |s(t)| < 1 - \delta\}$. For |p| sufficiently small, $s_p = s(1 + p\xi)$ lies in \mathcal{B} . Let $F(t) = \mathscr{V}(s_p)$. Taking the derivative at p = 0, one obtains

$$\frac{1}{2} \int_{A_{\delta}} \xi(t) \, s(t) \, \Phi^{\rho}_{\beta}(s;t) \, dt = 0 \tag{(*)}$$

Now take $\xi = s\Phi_{\beta}^{\rho}(s; \cdot)$ on A_{δ} and $\xi = 0$ on A_{δ}^{c} ; (*) implies that $s\Phi(s; \cdot) = 0$ on A_{δ} . Since δ was arbitrary, Lemma B3 implies that $s\Phi_{\beta}^{\rho}(s; \cdot) = 0$. Thus, $\Phi_{\beta}^{\rho}(s; \cdot) = 0$ on B, the essential support of s; but by the definition of $\Phi_{\beta}^{\rho}(s; \cdot)$, $\Phi_{\beta}^{\rho}(s; \cdot) = 0$ on B^{c} .

The first part of Theorem 4 follows from Lemmas B2–B4; the rest of the claim follows as in ref. 6.

ACKNOWLEDGMENTS

I am grateful to N. G. Duffield and J. V. Pulè for generously providing and explaining their results, and thank them and J. T. Lewis for discussions and encouragement.

REFERENCES

- 1. N. N. Bogoljubov, Jr., Physica 32:933 (1966).
- N. N. Bogoljubov, Jr., J. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, and N. S. Tonchev, Russ. Math. Surv. 39:1 (1984).
- 3. N. N. Bogoljubov, Jr., and V. N. Plechko, Physica 82A:163 (1976).
- 4. W. Cegła, J. T. Lewis, and G. A. Raggio, Commun. Math. Phys. 118:337 (1988).
- 5. J. M. Cook, J. Math. Phys. 2:33 (1961).
- 6. N. G. Duffield and J. V. Pulè, Commun. Math. Phys. 118:475 (1988).
- 7. J. Ginibre, Commun. Math. Phys. 8:26 (1968).
- 8. K. Hepp and E. H. Lieb, Ann. Phys. (N.Y.) 76:360 (1973).
- 9. K. Hepp and E. H. Lieb, Phys. Rev. A 8:2517 (1973).
- 10. J. T. Lewis and G. A. Raggio, J. Stat. Phys. 50:1201 (1988).
- 11. G. A. Raggio, unpublished results.
- 12. V. A. Zagrebnov, Z. Phys. B 55:75 (1984).